Evaluation of swelling properties and drug release from mechanochemical pre-gelatinized glutinous rice starch matrix tablets by near infrared spectroscopy

2021 ◽  
pp. 096703352098235
Author(s):  
Tomomi Takaku ◽  
Yusuke Hattori ◽  
Tetsuo Sasaki ◽  
Tomoaki Sakamoto ◽  
Makoto Otsuka

The effect of grinding on the pharmaceutical properties of matrix tablets consisting of ground glutinous rice starch (GRS) and theophylline (TH) was predicted by near infrared (NIR) spectroscopy. Ground GRS samples were prepared by grinding GRS in a planetary ball mill for 0-120 min, measured by X-ray diffractometry (XRD) and NIR, and then evaluated for crystallinity (%XRD) based on XRD profiles. Tablets containing TH (5 w/w%), ground GRS (94 w/w%), and magnesium stearate (1 w/w%) were formed by compression. Gel-forming and drug-release processes of the tablets were measured using a dissolution instrument with X-ray computed tomography (XCT). Swelling ratio (SWE) and mean drug-release time (MDT) were evaluated based on XCT and drug-release profiles, respectively. Calibration models for predicting percent %XRD, MDT, and SWE were constructed based on the NIR of ground GRS using partial least-squares. The results indicated the possibility of controlling the pharmaceutical properties of matrix tablets by altering the pre-gelatinization of GRS based on changes in their NIR spectra during the milling process.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 578
Author(s):  
Bilal Harieth Alrimawi ◽  
May Yee Chan ◽  
Xin Yue Ooi ◽  
Siok-Yee Chan ◽  
Choon Fu Goh

Rice starch is a promising biomaterial for thin film development in buccal drug delivery, but the plasticisation and antiplasticisation phenomena from both plasticisers and drugs on the performance of rice starch films are not well understood. This study aims to elucidate the competing effects of sorbitol (plasticiser) and drug (antiplasticiser) on the physicochemical characteristics of rice starch films containing low paracetamol content. Rice starch films were prepared with different sorbitol (10, 20 and 30% w/w) and paracetamol contents (0, 1 and 2% w/w) using the film casting method and were characterised especially for drug release, swelling and mechanical properties. Sorbitol showed a typical plasticising effect on the control rice starch films by increasing film flexibility and by reducing swelling behaviour. The presence of drugs, however, modified both the mechanical and swelling properties by exerting an antiplasticisation effect. This antiplasticisation action was found to be significant at a low sorbitol level or a high drug content. FTIR investigations supported the antiplasticisation action of paracetamol through the disturbance of sorbitol–starch interactions. Despite this difference, an immediate drug release was generally obtained. This study highlights the interplay between plasticiser and drug in influencing the mechanical and swelling characteristics of rice starch films at varying concentrations.


Holzforschung ◽  
2006 ◽  
Vol 60 (3) ◽  
pp. 332-338 ◽  
Author(s):  
Scott M. Kent ◽  
Robert J. Leichti ◽  
Jeffrey J. Morrell ◽  
David V. Rosowsky ◽  
Stephen S. Kelley

Abstract Weight loss, specific gravity and strength are traditional measures of how wood changes after fungal exposure. This study investigated the effects of fungal decay on properties of oriented strand board (OSB) made of aspen including weight loss, specific gravity, dowel-bearing strength, shear strength, and alkali solubility. Shear strength and alkali solubility were strongly correlated with specific gravity. In addition, X-ray densitometry and near-infrared (NIR) spectroscopy were used to study the decay process. X-Ray densitometry was used to assess localized density around the dowel-bearing embedment zone of a nail. A statistical model using the specific gravity directly under the nail from dowel-bearing strength tests as the explanatory variable had a higher coefficient of determination than models using the gross specific gravity of the sample. Predictive models using NIR spectro-scopy, in combination with multivariate statistical methods, showed promise as predictors of weight loss, shear strength, dowel-bearing strength, and solubility.


2004 ◽  
Vol 194 ◽  
pp. 65-66
Author(s):  
S. Chaty ◽  
P. Filliatre

AbstractThe X-ray source IGR J16318-4848 was the first source discovered by INTEGRAL on 2003, January 29. We carried out optical and near-infrared (NIR) observations at the European Southern Observatory (ESO La Silla) in the course of a Target of Opportunity (ToO) programme. We discovered the optical counterpart and confirmed an already proposed NIR candidate. NIR spectroscopy revealed a large amount of emission lines, including forbidden iron lines and P-Cygni profiles. The spectral energy distribution of the source points towards a high luminosity and a high temperature, with an absorption greater than the interstellar absorption, but two orders of magnitude lower than the X-ray absorption. We show that the source is an High Mass X-ray binary (HMXB) at a distance between ~ 1 and ~ 6 kpc, the mass donor being an early-type star, probably a sgB[e] star, surrounded by a rich and absorbing circumstellar material. This would make the second High Mass X-ray Binary (HMXB) with a sgB[e] star after CI Cam, indicating that a new class of strongly absorbed X-ray binaries is being unveiled by INTEGRAL.


2013 ◽  
Vol 747 ◽  
pp. 131-134
Author(s):  
Somkamon Manchun ◽  
Sontaya Limmatvapirat ◽  
Pornsak Sriamornsak

Modified starches have been widely used as an excipient in matrix tablets to control drug release. A new processing method for the production of modified starch, high power ultrasonic treatment (400 W), was applied to native tapioca starch. The spray drying technique was used after modification (i.e., by ultrasonic or heat treatment). Matrix tablets were then prepared by direct compression using theophylline as a model drug. The effect of starch modification on swelling, erosion and in vitro drug release behaviors of compressed matrices was investigated in 0.1 N HCl or phosphate buffer (pH 6.8). The matrix tablets of modified tapioca starch formed a continuous gel layer while in contact with the aqueous medium undergoing a combination of swelling and erosion. The ultrasound-treated starch swelled and eroded less than the native starch and heat-treated starch, thus the drug release from matrix tablets using ultrasound-treated starch was slower. For these results, it can be concluded that the ultrasound-treated starch was a promising excipient for controlled drug release.


2005 ◽  
Vol 59 (11) ◽  
pp. 1365-1371 ◽  
Author(s):  
Patrick McArdle ◽  
Karen Gilligan ◽  
Desmond Cunningham ◽  
Alan Ryder

The pharmaceutical compound bicifadine hydrochloride, which has been found to crystallize in two polymorphic forms, has been characterized by thermal analysis, X-ray powder diffraction (XRPD), infrared (IR) spectroscopy, and near-infrared (NIR) spectroscopy. A series of 22 sample mixtures of polymorph 1 and polymorph 2 were prepared and calibration models for the quantitation of these binary mixtures have been developed for each of the XRPD, attenuated total reflectance (ATR)-IR, and ATR-NIR analytical techniques. The quantitative results were obtained using a partial least squares (PLS) algorithm, which predicted the concentration of polymorph 1 from the XRPD spectra with a root mean standard error of prediction (RMSEP) of 4.4%, from the IR spectra with a RMSEP of 3.8%, and from the NIR spectra with a RMSEP of 1.4%. The studies indicate that when analyses are carried out on equivalent sets of spectra, NIR spectroscopy offers significant advantages in quantitative accuracy as a tool for the determination of polymorphs in the solid state and is also more convenient to use than both the ATR-IR and XRPD methods. Density functional theory (DFT) B3LYP calculations and IR spectral simulation have been used to determine the nature of the vibrational modes that are the most sensitive in the analysis.


IAWA Journal ◽  
2003 ◽  
Vol 24 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Laurence Schimleck ◽  
Robert Evans ◽  
Jugo Ilic

Near infrared (NIR) spectroscopy was applied to fifty-four species (59 samples in total) representing a diverse array of taxonomic affiliations, wood chemistry and physical properties. Acetone and ethanol were used to remove extractives from the wood samples used in this study. The extracted samples were characterized in terms of collapse-free density, microfibril angle and longitudinal modulus of elasticity (estimated using the collapse-free density and X-ray diffraction data obtained from Silvi- Scan-2). NIR spectra were obtained from the radial longitudinal face of each sample and used to generate calibrations for the measured physical properties. Extraction was found to improve the calibration statistics for all properties.


IAWA Journal ◽  
2007 ◽  
Vol 28 (1) ◽  
pp. 1-12 ◽  
Author(s):  
L.R. Schimleck ◽  
E. Sussenbach ◽  
G. Leaf ◽  
P.D. Jones ◽  
C.L. Huang

The use of calibrated near infrared (NIR) spectroscopy for predicting the microfibril angle (MFA) of Pinus taeda L. (loblolly pine) wood samples is described. NIR spectra were collected from the tangential face of earlywood (EW) and latewood (LW) sections cut from eleven P. taeda radial strips. The MFA of these sections was measured using X-ray diffraction. Calibrations for MFA were determined using all samples combined, EW only and LW only. Relationships were good, with coefficients of determination (R2) ranging from 0.86 (EW) to 0.91 (LW). A calibration for MFA based on NIR spectra collected from sections of 8 strips was used to predict the MFA of sections from the remaining 3 strips. Prediction statistics were strong (R2p = 0.81, SEP= 5.2 degrees, RPDp = 2.23) however errors were greater than those reported previously for studies based on NIR spectra collected from the radial-longitudinal face. The results presented in this study demonstrate that it is possible to use tangential face NIR spectra to determine MFA variation for EW and LW within individual growth rings.


Sign in / Sign up

Export Citation Format

Share Document