Macroinvertebrate size spectra of Mediterranean ponds with differing hydroperiod length

2005 ◽  
Vol 15 (6) ◽  
pp. 601-611 ◽  
Author(s):  
Angelo G. Solimini ◽  
Valentina Della Bella ◽  
Marcello Bazzanti

2017 ◽  
Author(s):  
Melissa R. Luna ◽  
◽  
Suzanne O'Connell ◽  
Joseph D. Ortiz ◽  
Michael C. Wizevich


1985 ◽  
Vol 28 (2) ◽  
pp. 405-410 ◽  
Author(s):  
Wesley E. Yates ◽  
Robert E. Cowden ◽  
Norman B. Akesson
Keyword(s):  


Author(s):  
Henglong Xu ◽  
Yong Jiang ◽  
Wei Zhang ◽  
Mingzhuang Zhu ◽  
Khaled A. S. Al-Rasheid ◽  
...  

The annual variations in body-size spectra of planktonic ciliate communities and their relationships to environmental conditions were studied based on a 12-month dataset (June 2007 to May 2008) from Jiaozhou Bay on the Yellow Sea coast of northern China. Based on the dataset, the body sizes of the ciliates, expressed as equivalent spherical diameters, included five ranks: S1 (5–35 μm); S2 (35–55 μm); S3 (55–75 μm); S4 (75–100 μm); and S5 (100–350 μm). These body-size ranks showed a clear temporal succession of dominance in the order of S2 (January–April) → S1 (May–July) → S4 (August–September) → S3 (October–December). Multivariate analyses showed that the temporal variations in their body-size patterns were significantly correlated with changes in environmental conditions, especially water temperature, salinity, dissolved oxygen concentration (DO) and nutrients. In terms of abundance, rank S2 was significantly correlated with water temperature, DO and nutrients, whereas ranks S4 and S5 were correlated with the salinity and nutrients respectively (P < 0.05). These results suggest that the body-size patterns of planktonic ciliate communities showed a clear temporal pattern during an annual cycle and significantly associated with environmental conditions in marine ecosystems.



1989 ◽  
Vol 20 (8) ◽  
pp. 1221-1224 ◽  
Author(s):  
Thomas Schumann ◽  
Richard Heimgartner




2008 ◽  
Vol 28 (3) ◽  
pp. 1174-1182 ◽  
Author(s):  
Zuo Tao ◽  
Wang Jun ◽  
Jin Xianshi ◽  
Li Zhongyi ◽  
Tang Qisheng


1982 ◽  
Vol 21 (9) ◽  
pp. 1578 ◽  
Author(s):  
R. Rizzi ◽  
R. Guzzi ◽  
R. Legnani


Author(s):  
G. Tita ◽  
M. Vincx ◽  
G. Desrosiers

Nematode species from three intertidal assemblages (St Lawrence Estuary, Quebec, Canada) were studied in order to form an ecological interpretation of three allometric attributes: body width, size spectra, and morphotypes. The three assemblages were characterized by a very similar sediment grain median (Md) but different silt–clay proportions: A1 (upper-tidal level; Md=122 μm; silt=34.8%), A3 (mid-tidal level; Md=182 μm; silt=12.8%), and A5 (lower-tidal level; Md=122 μm; silt=6.8%). Silt–clay proportions were an influential factor in determining the mean nematode body width, used as a morphological discriminant between burrowing and interstitial organisms. A plot of the number of species vs the body width-classes showed two peaks: between 19.3 and 22.6 μm (interstitial), and between 32.0 and 45.5 μm (burrowers). As for the size spectra, in sandy sediments the mean nematode individual biomass was smaller than in muddy sediments. As a consequence, the estimated mean individual respiration rate was greater in muddy (A1=2.26 nl O2 h−1) than sandy sediments (A3=1.25 nl O2 h−1; A5=1.12 nl O2 h−1). In contrast, estimated metabolic ratios were lower in A1 (2.78 nl O2 h−1 μg−1 dry weight, DW) than in A3 (2.95 nl O2 h−1 μg−1 DW) and A5 (3.01 nl O2 h−1 μg−1 DW) suggesting different productivity and/or physiological adaptations to different lifestyles (burrowing vs interstitial) between species inhabiting muddy or sandy sediments. Morphotypes (body width/body length ratio=w/l ratio) were found to be associated with feeding groups. Small w/l ratios were typical of microvores, while greater ratios were typical of epigrowth feeders and predators. Ciliate-feeders, deposit-feeders and facultative predators had intermediate ratios. A morphotype food-related hypothesis is proposed: the species morphotype reflects the quality of exploited food; a small w/l ratio (i.e. long gut) would favour digestive efficiency and would be an adaptation to low quality food (microvores); inversely, a greater w/l ratio (i.e. short gut) would be an adaptation to high quality food (epigrowth-feeders and predators).



Sign in / Sign up

Export Citation Format

Share Document