Specialized cell types in the human fetal small intestine

1978 ◽  
Vol 191 (3) ◽  
pp. 269-285 ◽  
Author(s):  
Pamela Colony Moxey ◽  
Jerry S. Trier
2017 ◽  
Vol 2 ◽  
pp. 39 ◽  
Author(s):  
Antonia O. Cuff ◽  
Victoria Male

Mouse liver contains both Eomes-dependent conventional natural killer (cNK) cells and Tbet-dependent liver-resident type I innate lymphoid cells (ILC1). In order to better understand the role of ILC1, we attempted to generate mice that would lack liver ILC1, while retaining cNK, by conditional deletion of Tbet in NKp46+ cells. Here we report that the Ncr1iCreTbx21fl/fl mouse has a roughly equivalent reduction in both the cNK and ILC1 compartments of the liver, limiting its utility for investigating the relative contributions of these two cell types in disease models. We also describe the phenotype of these mice with respect to NK cells, ILC1 and NKp46+ ILC3 in the spleen and small intestine lamina propria.


2005 ◽  
Vol 53 (4) ◽  
pp. 475-486 ◽  
Author(s):  
Eleanor Y.M. Sum ◽  
Lorraine A. O'Reilly ◽  
Nadeen Jonas ◽  
Geoffrey J. Lindeman ◽  
Jane E. Visvader

LMO4 belongs to the LIM-only family of zinc finger proteins that have been implicated in oncogenesis. The LMO4 gene is overexpressed in breast cancer and oral cavity carcinomas, and high levels of this protein inhibit mammary epithelial differentiation. Targeted deletion of Lmo4 in mice leads to complex phenotypic abnormalities and perinatal lethality. To further understand the role of LMO4, we have characterized Lmo4 expression in adult mouse tissues by immunohistochemical staining using monoclonal anti-Lmo4 antibodies. Lmo4 was highly expressed within specific cell types in diverse tissues. Expression was prevalent in epithelial-derived tissues, including the mammary gland, tongue, skin, small intestine, lung, and brain. High levels of Lmo4 were frequently observed in proliferating cells, such as the crypt cells of the small intestine and the basal cells of the skin and tongue. Lmo4 was highly expressed in the proliferative cap cell layer of the terminal end buds in the peripubertal mammary gland and in the lobuloalveolar units during pregnancy. The expression profile of Lmo4 suggests that this cofactor is an important regulator of epithelial proliferation and has implications for its role in the pathogenicity of cancer.


1998 ◽  
Vol 95 (2) ◽  
pp. 171-177
Author(s):  
Eddy CHUA ◽  
Qiong WANG ◽  
Paul O'TOOLE ◽  
Martin LOMBARD

1.The aim of this study was to devise a method of segregating crypt and villus cell subpopulations from endoscopic human small intestinal biopsies which might be used to examine changes associated with functional differentiation at the molecular level. 2.Routine endoscopic biopsies from the human small intestine were subjected to a modified protocol of mechanical disruption and chelation to yield subpopulations of different cell types. The purity and character of the cell populations isolated was assessed by measuring enzyme activity and thymidine incorporation and by histology. A guanidinium isothiocyanate method was adapted for small samples to extract RNA from the isolated subpopulations, and probes for RNA with a known predilection for crypt and villus cells were used to further investigate the application and usefulness of the technique. 3.Sequential histological examination during the segregation protocol demonstrated that different cell types were removed serially from the biopsy samples. Cell-type enrichment of the segregated subpopulations was demonstrated by differential alkaline phosphatase activity and by differences in thymidine incorporation in the samples isolated. Sufficient quantities of RNA could be extracted from the segregated subpopulations for Northern blot analysis and the differential expression of mRNA for sucrase-isomaltase and transferrin receptor was demonstrated in the villus and crypt subpopulations respectively. 4.Messenger RNA can be successfully extracted from different cell types segregated from routine human endoscopic small intestinal biopsies. This technique should prove useful for investigating the mechanisms regulating the functional differentiation of epithelial cells in the small intestine and the regulatory mechanisms governing absorption of macromolecules.


2017 ◽  
Vol 28 (2) ◽  
pp. 229-232 ◽  
Author(s):  
Karl S. Matlin ◽  
Michael J. Caplan

The secretory pathway along which newly synthesized secretory and membrane proteins traffic through the cell was revealed in two articles published 50 years ago. This discovery was the culmination of decades of effort to unite the power of biochemical and morphological methodologies in order to elucidate the dynamic nature of the cell’s biosynthetic machinery. The secretory pathway remains a central paradigm of modern cell biology. Its elucidation 50 years ago inspired tremendous multidisciplinary and on-going efforts to understand the machinery that makes it run, the adaptations that permit it to serve the needs of specialized cell types, and the pathological consequences that arise when it is perturbed.


1991 ◽  
Vol 36 (1-2) ◽  
pp. 31-40 ◽  
Author(s):  
Stefania De Lucchini ◽  
Filippo M. Rijli ◽  
Gennaro Ciliberto ◽  
Giuseppina Barsacchi
Keyword(s):  

2018 ◽  
Vol 20 (2) ◽  
pp. 259-264
Author(s):  
A V Kosulin ◽  
L N Beldiman ◽  
S V Kromsky ◽  
A A Kokorina ◽  
E V Mikhailova ◽  
...  

Short bowel syndrome is an important clinical problem characterized by a high incidence of serious complications, deaths and socioeconomic consequences. Parenteral nutrition provides only a temporary solution without reducing the risk of complications. This applies equally to surgical treatment, in particular to small intestine transplantation and related concomitant interventions, which only facilitate the adaptation of the intestine to new conditions. Potential approaches have been analyzed in the treatment of the syndrome of the small intestine, which can be offered by dynamically developing tissue engineering. Various types of carriers and cell types that are used in experiments for obtaining tissue engineering designs of the intestine are discussed. A wide range of variants of such constructions is analyzed that can lead to obtaining an organ prosthesis with a cellular organization and mechanical stability similar to those of the native small intestine, which will ensure the necessary biocompatibility. It is established that one of the optimal carriers for today are extracellular matrices obtained by decellularization of the native small intestine. This process allows to preserve the microarchitecture of the small intestine, which greatly facilitates the process of filling the matrix with cells both in vitro and in vivo. It has also been established that mesenchymal stromal multipotent cells and organoid units obtained from the tissue of the native small intestine are particularly prominent among the most promising participants in the cellular ensemble.


2021 ◽  
Vol 24 (2) ◽  
pp. 176-183
Author(s):  
D. Yovchev ◽  
G. Penchev

The aim of the study was to investigate the goblet cell types and their density in the small intestine of bronze turkey (Meleagris meleagris gallopovo), by means of Alcian blue-PAS staining. Sixty birds from 10 age groups were used. In the duodenum and jejunum, goblet cells produced acid, neutral and mixed mucins, while in the jejunum - acid mucins. A negative relationship was observed between cell density and either duodenum or jejunum lengths; such a correlation was not established in the ileum.


Sign in / Sign up

Export Citation Format

Share Document