scholarly journals Reduction of in vitro invasion and in vivo cartilage degradation in a SCID mouse model by loss of function of the fibrinolytic system of rheumatoid arthritis synovial fibroblasts

2011 ◽  
Vol 63 (9) ◽  
pp. 2584-2594 ◽  
Author(s):  
Simona Serratì ◽  
Francesca Margheri ◽  
Anastasia Chillà ◽  
Elena Neumann ◽  
Ulf Müller-Ladner ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5256-5256
Author(s):  
Doug Cipkala ◽  
Kelly McQuown ◽  
Lindsay Hendey ◽  
Michael Boyer

Abstract The use of cytotoxic T-lymphocytes (CTL) has been attempted experimentally with various tumors to achieve disease control. Factors that may influence GVT include CTL cytotoxicity, ability to home to disease sites, and survival of T cells in the host. The objective of our study is to evaluate the GVL effects of human alloreactive CTL against ALL in a chimeric NOD/scid mouse model. CTL were generated from random blood donor PBMCs stimulated with the 697 human ALL cell line and supplemented with IL-2, -7, or -15. CTL were analyzed for in vitro cytotoxicity against 697 cells, phenotype, and in vitro migration on day 14. NOD/scid mice were injected with 107 697 ALL cells followed by 5x106 CTL. Mice were sacrificed seven days following CTL injection and residual leukemia was measured in the bone marrow and spleen via flow cytometry. The ratios of CD8/CD4 positive T cells at the time of injection were 46/21% for IL-2, 52/31% for IL-7, and 45/14% for IL-15 cultured CTL (n=13). Control mice not receiving CTL had a baseline leukemia burden of 2.01% and 0.15% in the bone marrow and spleen, respectively (n=15). Mice treated with IL-15 cultured CTL had a reduction in tumor burden to 0.2% (n=13, p=0.01) and 0.05% (n=13, p=0.01) in bone marrow and spleen, respectively. Those treated with IL-2 or IL-7 cultured CTL showed no significant difference in leukemia burden in either the bone marrow (IL-2 1.28%, Il-7 5.97%) or spleen (IL-2 0.4%, IL-7 0.33%). No residual CTL could be identified in the bone marrow or spleen at the time of sacrifice in any CTL group. CTL grown in each cytokine resulted in similar in vitro cytotoxicity at an effector:target ratio of 10:1 (IL-2 41.3%, IL-7 37.7%, IL-15 45.3%, n=12–15, p>0.05 for all groups) and had statistically similar intracellular perforin and granzyme-B expression. In vitro CTL migration to a human mesenchymal stem cell line was greatest with IL-15 CTL (30.5%, n=4), followed by IL-7 CTL (18.9%, n=4), and least in IL-2 CTL (17.9%, n=4), though the differences were not significant. In vitro CTL migration was analyzed to an SDF-1α gradient as CXCR4/SDF-1α interactions are necessary for hematopoietic progenitor cell homing to the bone marrow. IL-15 cultured CTL showed the highest migration (48.8%, n=8) as compared to IL-2 (21.7%, n=6, p=0.048) or IL-7 CTL (35.9%, n=8, p>0.05). However, surface expression of CXCR4 measured by flow cytometry was significantly higher in IL-7 CTL (89.4%, n=9) compared to IL-2 CTL (52.2%, n=9, p<0.001) and IL-15 CTL (65.4%, n=10, p=0.002). Experiments are currently underway to further evaluate the role of CXCR4/SDF-1α in GVL. Preliminary in vivo experiments do not suggest any significant differences in CTL engraftment when evaluated at 24 hours post injection. Expression of the anti-apoptotic bcl-2 protein was greatest on IL-7 (MFI=5295, n=13) and IL-15 (MFI=4865, n=14) when compared to IL-2 CTL (MFI=3530, n=13, p=0.02 vs. IL-7, p=0.05 vs. IL-15), suggesting an increased in vivo survival ability. We hypothesize that IL-15 cultured CTL have greater GVL effects due to either higher in vivo survival, greater bone marrow homing efficiency, or both. Future experiments are planned to evaluate in vivo administration of IL-2 to enhance CTL survival in the host. In conclusion, IL-15 cultured CTL had significantly greater in vivo GVL effects compared to IL-2 and IL-7 CTL in the NOD/scid mouse model. This model can be utilized to evaluate the mechanism of T cell mediated GVL against ALL and potentially other human malignancies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250120
Author(s):  
Andrey Skripchenko ◽  
Monique P. Gelderman ◽  
Jaroslav G. Vostal

Platelets for transfusion are stored at room temperature (20–24°C) up to 7 days but decline in biochemical and morphological parameters during storage and can support bacterial proliferation. This decline is reduced with p38MAPK inhibitor, VX-702. Storage of platelets in the cold (4–6°C) can reduce bacterial proliferation but platelets get activated and have reduced circulation when transfused. Thermocycling (cold storage with brief periodic warm ups) reduces some of the effects of cold storage. We evaluated in vitro properties and in vivo circulation in SCID mouse model of human platelet transfusion of platelets stored in cold or thermocycled for 14 days with and without VX-702. Apheresis platelet units (N = 15) were each aliquoted into five storage bags and stored under different conditions: room temperature; cold temperature; thermocycled temperature; cold temperature with VX-702; thermocycled temperature with VX-702. Platelet in vitro parameters were evaluated at 1, 7 and 14 days. On day 14, platelets were infused into SCID mice to assess their retention in circulation by flow cytometry. VX-702 reduced negative platelet parameters associated with cold and thermocycled storage such as an increase in expression of activation markers CD62, CD63 and of phosphatidylserine (marker of apoptosis measured by Annexin binding) and lowered the rise in lactate (marker of increase in anaerobic metabolism). However, VX-702 did not inhibit agonist-induced platelet aggregation indicating that it does not interfere with platelet hemostatic function. In vivo, VX-702 improved initial recovery and area under the curve in circulation of human platelets infused into a mouse model that has been previously validated against a human platelet infusion clinical trial. In conclusion, inhibition of p38MAPK during 14-days platelet storage in cold or thermocycling conditions improved in vitro platelet parameters and platelet circulation in the mouse model indicating that VX-702 may improve cell physiology and clinical performance of human platelets stored in cold conditions.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4518-4518
Author(s):  
Takuya Matsunaga ◽  
Kazunori Kato ◽  
Maki Tanaka ◽  
Yukari Masuta ◽  
Kageaki Kuribayashi ◽  
...  

Abstract Bone marrow (BM) minimal residual disease causes relapse after chemotherapy in AML. We have previously reported that VLA4-positive leukemic cells acquired resistance to drug-induced apoptosis through the PI-3K/AKT/Bcl-2 signaling pathway, which is activated by the interaction of VLA4 and fibronectin on BM stromal cells. This resistance was negated by mouse-anti-human VLA4Ab (mouse VLA4Ab). In human leukemia SCID mouse model, we demonstrated a 100% survival rate with combination of mouse VLA4 Ab and AraC, while with AraC alone, only slight prolongation of survival was attained. In clinical study, overall survival at 5 years was 90% for 10 VLA4− patients and 25% for 15 VLA4+ patients (Matsunaga T et al, Nature Med 2003, 9, 1158–1165). In the present study, to perform the translational research, we first examined the myelosuppressive effect of the combination of rat-anti-mouse VLA4 Ab and AraC in C57/BL6 mice, and found that CBC data were almost the same as those of the mice treated with AraC alone. We next produced humanized chimeric-anti-human VLA4 Ab (chimeric-VLA4Ab), and examined its efficacy in combination with anti-cancer drugs in vitro and in vivo (human leukemia SCID mouse model). Chimeric-VLA4Abs were produced as follows: (i) total RNA of mouse VLA4 Abs were extracted from two hybridomas (SG/17 and SG/73), (ii) cDNA were synthesized by reverse transcriptase, (iii) variable region gene of mouse VLA4 Abs were amplified by 5′RACE method, (iv) TA cloning of amplified gene was performed, (v) sequence of mouse VLA4Abs gene was determined, (v) cloned variable region gene of mouse VLA4 Abs and constant region gene of human IgG1 were inserted into expression vector, and the expression vector was transfected into 293T cells, (vi) supernatant of the 293T cells was collected and purified to obtain chimeric-VLA4 Abs. The effects of chimeric-VLA4 Abs thus obtained in in vitro and in vivo (human leukemia SCID mouse model) were comparable to those of mouse VLA4 Abs. To perform the clinical study, we are presently producing the GMP-graded chimeric-VLA4 Abs.


2021 ◽  
Vol 12 ◽  
pp. 204062232199725
Author(s):  
Lu Xue ◽  
Chunhuai Li ◽  
Jin Ren ◽  
Yue Wang

Aims: Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm, in which relapse due to drug resistance is the main cause for treatment failure and the disease progression. In this study, we aimed to investigate the molecular mechanism of KDM4C-dependent MALAT1/miR-328-3p/CCND2 axis in cytarabine (Ara-C) resistance in the context of AML. Methods: Bioinformatics analysis was performed to predict the targeting relationships among KDM4C, MALAT1, miR-328-3p, and CCND2 in AML, which were validated with chromatin immunoprecipitation and dual-luciferase reporter assay. Methylation-specific polymerase chain reaction was conducted to detect the methylation of MALAT1 promoter. After conducting gain- and loss-of-function assays, we investigated the effect of KDM4C on cell Ara-C resistance. A NOD/SCID mouse model was established to further investigate the roles of KDM4C/MALAT1/miR-328-3p/CCND2 in Ara-C resistant AML cells. Results: KDM4C expression was upregulated in AML. KDM4C upregulation promoted the demethylation in the promoter region of MALAT1 to increase its expression, MALAT1 targeted and inhibited miR-328-3p expression, enhancing the Ara-C resistance of HL-60/A. miR-328-3p targeted and suppressed the expression of CCND2 in HL-60/A to inhibit the Ara-C resistance. Mechanistically, KDM4C regulated miR-328-3p/CCND2 through MALAT1, resulting in Ara-C resistance in AML. Findings in an in vivo xenograft NOD/SCID mouse model further confirmed the contribution of KDM4C/MALAT1/miR-328-3p/CCND2 in the Ara-C resistant AML. Conclusion: Our study demonstrated that KDM4C may up-regulate MALAT1 expression, which decreases the expression of miR-328-3p. The downregulation of miR-328-3p increased the level of CCND2, which induced the Ara-C resistance in AML.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2452-2452
Author(s):  
Rosa Lapalombella ◽  
Virginia Goettl ◽  
Katie Williams ◽  
Larissa Tangeman ◽  
Shruti Jha ◽  
...  

Abstract Abstract 2452 CRM1 (chromosomal regional maintenance 1) or XPO1 (exportin 1) is the major protein that mediates nuclear export. XPO1 has been shown to be over-expressed in cancer cells leading to ineffective cytoplasmic localization of multiple tumor suppressor genes such us p53, FOX03a, and Iκ-β. Chronic Lymphocytic Leukemia (CLL) is characterized by disrupted apoptosis caused both by microenviromental stimuli and aberrant activation of survival pathways including PI3K/Akt, NF-kB, and p53. We previously showed that first generations Selective Inhibitor of Nuclear Export (SINE), KPT-185 and KPT-251, specifically bind to and block XPO1 function resulting in re-activation of tumor suppressor pathways and apoptosis in CLL. Furthermore, we showed that KPT-251 at 75mg/Kg, 3 times per week (QODX3) slowed disease progression, and improved overall survival in the Eμ-TCL1-SCID mouse model of CLL (median OS = 130 and 72 days for KPT-330 and vehicle respectively; p=0.01) with minimal weight loss or other toxicities. The goal of this study was to determine the efficacy of KPT-330, a new generation SINE currently in Phase 1 human studies, with improved pharmacokinetic and oral bioavailability, in the Eμ-TCL1-SCID mouse model of CLL. We first compared the in-vitro activity of KPT-330 to KPT-251. KPT-330 induced improved levels of cytotoxicity on CLL cells compared to KPT-251 with retained selective cytotoxicity against tumor cells when compared to peripheral blood mononuclear cells and isolated B, and T cells. Similar to KPT-251, KPT-330 showed enhanced cytotoxic potency on CLL cells under coculture conditions with stromal cells compared to CLL alone (p<0.05). Interestingly KPT-330 prevented CPG induced proliferation of CLL cells (p<0.005) and migration of CLL cells driven by CXCL12 and CXCL13, homing factors for hematopoietic cells to the marrow that are constitutively secreted by bone marrow stromal cells. KPT-330 was also more effective than KPT-251 in mediating cytotoxicity of murine TCL1+ cells in-vitro. We therefore tested the ability of KPT-330 to slow disease progression in Eμ-TCL1-SCID mouse model of CLL in which CD19+ TCL1 leukemia cells were engrafted into SCID mice via tail vein injection. Treatments began 2 weeks post engraftment. 9 or 10 mice in each treatment group were treated with: a) vehicle control twice weekly (BIW), b) KPT-330 5 mg/kg BIW, c) KPT-330 15 mg/kg BIW d) vehicle control QODX3, e) KPT-330 1 mg/kg QODX3 for 9 weeks followed by 15 mg/kg QODX3, f) KPT-330 3 mg/kg QODX3, g) KPT-330 10 mg/kg QODX3 for up to a maximum of 36 weeks. In surviving mice, treatment was stopped after 36 weeks and animals were followed up for 30 additional days. Overall survival (OS) was the primary endpoint. Within the BIW groups, only KPT-330 at 15 mg/kg (median OS = undefined p=0.0002) showed a significant improvement over vehicle (median OS = 98 days) with 100% of the mice still alive at the end of the study (week 40). Within the QODX3 groups, KPT-330 10 and 15 mg/kg QODX3 (median OS = undefined, 213 days respectively) both showed a significant improvement (p<0.0001) over vehicle (median OS = 98.5). No improvement in survival compared to vehicle treated animals was induced by KPT-330 3 mg/kg. KPT-330 was well tolerated in mice, weight loss suggestive of drug toxicity was seen at the beginning of the study only in groups treated with KPT-330 at doses of >10 mg/kg QODX3 but was fully reversed by the end of the study and did not appear to adversely affect the animals. Moreover, KPT-330 at doses of >10 mg/kg BIW and QODX3 significantly prevented an increase in circulating CLL cells compared to vehicle. To further validate KPT-330 in mice with leukemic phase (ie, very high tumor burdens), 20 additional mice were engrafted with CD19+ TCL1 leukemia cells and treatment with vehicle or 15 mg/kg KPT-330 (QoDx3/wk) was initiated 70 days post engraftment. Mice treated with KPT-330 had a significant survival advantage (p=0.0008, median OS = undefined; 99 days, for KPT-330 and vehicle respectively). KPT-330 was strikingly active in prolonging survival of TCL1-SCID mice. Using CLL as a disease model we validate the clinical effectiveness of targeting XPO1 with use of SINE, with favorable therapeutic index in-vivo. These data strongly support the ongoing Phase 1 clinical studies of KPT-330 in patients with advanced hematologic malignancies including CLL. Disclosures: Sandanayaka: Karyopharm Therapeutics: Employment. Shechter:Karyopharm Therapeutics: Employment. McCauley:Karyopharm Therapeutics Inc: Employment. Shacham:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guping Mao ◽  
Yiyang Xu ◽  
Dianbo Long ◽  
Hong Sun ◽  
Hongyi Li ◽  
...  

Abstract Objectives Aberrations in exosomal circular RNA (circRNA) expression have been identified in various human diseases. In this study, we investigated whether exosomal circRNAs could act as competing endogenous RNAs (ceRNAs) to regulate the pathological process of osteoarthritis (OA). This study aimed to elucidate the specific MSC-derived exosomal circRNAs responsible for MSC-mediated chondrogenic differentiation using human bone marrow-derived MSCs (hMSCs) and a destabilization of the medial meniscus (DMM) mouse model of OA. Methods Exosomal circRNA deep sequencing was performed to evaluate the expression of circRNAs in human bone marrow-derived MSCs (hMSCs) induced to undergo chondrogenesis from day 0 to day 21. The regulatory and functional roles of exosomal circRNA_0001236 were examined on day 21 after inducing chondrogenesis in hMSCs and were validated in vitro and in vivo. The downstream target of circRNA_0001236 was also explored in vitro and in vivo using bioinformatics analyses. A luciferase reporter assay was used to evaluate the interaction between circRNA_0001236 and miR-3677-3p as well as the target gene sex-determining region Y-box 9 (Sox9). The function and mechanism of exosomal circRNA_0001236 in OA were explored in the DMM mouse model. Results Upregulation of exosomal circRNA_0001236 enhanced the expression of Col2a1 and Sox9 but inhibited that of MMP13 in hMSCs induced to undergo chondrogenesis. Moreover, circRNA_0001236 acted as an miR-3677-3p sponge and functioned in human chondrocytes via targeting miR-3677-3p and Sox9. Intra-articular injection of exosomal circRNA_0001236 attenuated OA in the DMM mouse model. Conclusions Our results reveal an important role for a novel exosomal circRNA_0001236 in chondrogenic differentiation. Overexpression of exosomal circRNA_0001236 promoted cartilage-specific gene and protein expression through the miR-3677-3p/Sox9 axis. Thus, circRNA_0001236-overexpressing exosomes may alleviate cartilage degradation, suppressing OA progression and enhancing cartilage repair. Our findings provide a potentially effective therapeutic strategy for treating OA.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Xue Chen ◽  
Yuanyuan Shi ◽  
Pan Xue ◽  
Xinli Ma ◽  
Junfeng Li ◽  
...  

Abstract Background Emerging evidence suggests that microRNAs (miRs) are associated with the progression of osteoarthritis (OA). In this study, the role of exosomal miR-136-5p derived from mesenchymal stem cells (MSCs) in OA progression is investigated and the potential therapeutic mechanism explored. Methods Bone marrow mesenchymal stem cells (BMMSCs) and their exosomes were isolated from patients and identified. The endocytosis of chondrocytes and the effects of exosome miR-136-5p on cartilage degradation were observed and examined by immunofluorescence and cartilage staining. Then, the targeting relationship between miR-136-5p and E74-like factor 3 (ELF3) was analyzed by dual-luciferase report assay. Based on gain- or loss-of-function experiments, the effects of exosomes and exosomal miR-136-5p on chondrocyte migration were examined by EdU and Transwell assay. Finally, a mouse model of post-traumatic OA was developed to evaluate effects of miR-136-5p on chondrocyte degeneration in vivo. Results In the clinical samples of traumatic OA cartilage tissues, we detected increased ELF3 expression, and reduced miR-136-5p expression was determined. The BMMSC-derived exosomes showed an enriched level of miR-136-5p, which could be internalized by chondrocytes. The migration of chondrocyte was promoted by miR-136-5p, while collagen II, aggrecan, and SOX9 expression was increased and MMP-13 expression was reduced. miR-136-5p was verified to target ELF3 and could downregulate its expression. Moreover, the expression of ELF3 was reduced in chondrocytes after internalization of exosomes. In the mouse model of post-traumatic OA, exosomal miR-136-5p was found to reduce the degeneration of cartilage extracellular matrix. Conclusion These data provide evidence that BMMSC-derived exosomal miR-136-5p could promote chondrocyte migration in vitro and inhibit cartilage degeneration in vivo, thereby inhibiting OA pathology, which highlighted the transfer of exosomal miR-136-5p as a promising therapeutic strategy for patients with OA.


Sign in / Sign up

Export Citation Format

Share Document