scholarly journals Editorial: Functional Connectivity: Dissecting the Relationship Between the Brain and “Pain Centralization” in Rheumatoid Arthritis

2018 ◽  
Vol 70 (7) ◽  
pp. 977-980 ◽  
Author(s):  
Yvonne C. Lee ◽  
Vitaly Napadow ◽  
Marco L. Loggia
2021 ◽  
Vol 14 ◽  
Author(s):  
Dongya Wu ◽  
Xin Li ◽  
Jun Feng

Brain connectivity plays an important role in determining the brain region’s function. Previous researchers proposed that the brain region’s function is characterized by that region’s input and output connectivity profiles. Following this proposal, numerous studies have investigated the relationship between connectivity and function. However, this proposal only utilizes direct connectivity profiles and thus is deficient in explaining individual differences in the brain region’s function. To overcome this problem, we proposed that a brain region’s function is characterized by that region’s multi-hops connectivity profile. To test this proposal, we used multi-hops functional connectivity to predict the individual face activation of the right fusiform face area (rFFA) via a multi-layer graph neural network and showed that the prediction performance is essentially improved. Results also indicated that the two-layer graph neural network is the best in characterizing rFFA’s face activation and revealed a hierarchical network for the face processing of rFFA.


2020 ◽  
Vol 61 (12) ◽  
pp. 1684-1694
Author(s):  
Artemis Andrianopoulou ◽  
Anastasia K Zikou ◽  
Loukas G Astrakas ◽  
Nafsika Gerolymatou ◽  
Vasileios Xydis ◽  
...  

Background Fatigue and depression are among the most common manifestations of primary Sjögren syndrome (pSS), but information is lacking on the relationship with brain function and microstructural changes. Purpose To investigate microstructural changes and brain connectivity in pSS, and to evaluate their relationship with fatigue and depression. Material and Methods The study included 29 patients with pSS (mean age 61.2 ± 12.1 years; disease duration 10.5 ± 5.9 years) and 28 controls (mean age 58.4 ± 9.2 years). All the patients completed the Beck’s depression and Fatigue Assessment Scale questionnaires. The imaging protocol consisted of: (i) standard magnetic resonance imaging (MRI) pulse sequences (FLAIR, 3D T1W); (ii) a diffusion tensor imaging pulse sequence; and (iii) a resting state functional MRI pulse sequence. Resting state brain networks and maps of diffusion metrics were calculated and compared between patients and controls. Results Compared with the controls, the patients with pSS and depression showed increased axial, radial, and mean diffusivity and decreased fractional anisotropy; those without depression showed decreased axial diffusivity in major white matter tracts (superior longitudinal fasciculus, inferior longitudinal fasciculus, corticospinal tract, anterior thalamic radiation, inferior fronto-occipital fasciculus, cingulum, uncinate fasciculus, and forceps minor-major). Decreased brain activation in the sensorimotor network was observed in the patients with pSS compared with the controls. No correlation was found between fatigue and structural or functional changes of the brain. Conclusion pSS is associated with functional connectivity abnormalities of the somatosensory cortex and microstructural abnormalities in major white matter tracts, which are more pronounced in depression.


2018 ◽  
Author(s):  
Şeyma Bayrak ◽  
Ahmed A. Khalil ◽  
Kersten Villringer ◽  
Jochen B. Fiebach ◽  
Arno Villringer ◽  
...  

AbstractUnderstanding the relationship between localized anatomical damage, reorganization, and functional deficits is a major challenge in stroke research. Previous work has shown that localized lesions cause widespread functional connectivity alterations in structurally intact areas, thereby affecting a whole network of interconnected regions. Recent advances suggest an alternative to discrete functional networks by describing a connectivity space based on a low-dimensional embedding of the full connectivity matrix. The dimensions of this space, described as connectivity gradients, capture the similarity of areas’ connections along a continuous space. Here, we defined a three-dimensional connectivity space template based on functional connectivity data from healthy controls. By projecting lesion locations into this space, we demonstrate that ischemic strokes resulted in dimension-specific alterations in functional connectivity over the first week after symptoms onset. Specifically, changes in functional connectivity were captured along connectivity Gradients 1 and 3. The degree of change in functional connectivity was determined by the distance from the lesion along these connectivity gradients regardless of the anatomical distance from the lesion. Together, these results provide a novel framework to study reorganization after stroke and suggest that, rather than only impacting on anatomically proximate areas, the indirect effects of ischemic strokes spread along the brain relative to the space defined by its connectivity.


2020 ◽  
Author(s):  
Dongya Wu ◽  
Xin Li ◽  
Jun Feng

AbstractBrain connectivity plays an important role in determining the brain region’s function. Previous researchers proposed that the brain region’s function is characterized by that region’s input and output connectivity profiles. Following this proposal, numerous studies have investigated the relationship between connectivity and function. However, based on a preliminary analysis, this proposal is deficient in explaining individual differences in the brain region’s function. To overcome this problem, we proposed that a brain region’s function is characterized by that region’s multi-hops connectivity profile. To test this proposal, we used multi-hops functional connectivity to predict the individual face response of the right fusiform face area (rFFA) via a multi-layers graph neural network and showed that the prediction performance is essentially improved. Results also indicated that the 2-layers graph neural network is the best in characterizing rFFA’s face response and revealed a hierarchical network for the face processing of rFFA.


2021 ◽  
Author(s):  
Guanjie Hu ◽  
Honglin Ge ◽  
Kun Yang ◽  
Dongming Liu ◽  
Yong Liu ◽  
...  

Abstract Contralateral regions play critical role in functional compensation in glioma patients. Voxel-mirrored homotopic connectivity (VMHC) characterizes the internal functional connectivity of the brain, which is considered to have a regional functional basis. This study aims to investigate the alterations of brain regional function and VMHC in patients with frontal glioma, and further investigate physiological significance of these alterations. We enrolled 22 patients with frontal glioma and 22 demography matched healthy controls (HC). We determined degree centrality (DC), regional homogeneity (ReHo), and VMHC to investigate the alterations of regional function and internal functional connectivity in patients. Furthermore, partial correlation analysis was conducted to explore the relationship between these indicators and cognitive functions.Compared with HC, patients showed decrease in static VMHC, DC, ReHo and dynamic ReHo (dReHo) within right middle frontal gyrus (MFG.R), left middle frontal gyrus (MFG.L), right precuneus(PCUN.R), left precuneus(PCUN.L), left limbic lobe (LIMB.L), right superior frontal gyrus (SFG.R), right postcentral gyrus (POCG.R), right inferior parietal lobule (IPL.R), but increase in dynamic VMHC (dVMHC) within PCUN.R and PCUN.L. Meanwhile, MFG.R with decreased VMHC, LIMB.L with decreased DC, LIMB.L with decreased ReHo, and PCUN.R with increased dVMHC were significantly positively correlated with cognitive function, but the SFG.R with decreased DC was significantly negatively correlated with memory. This study preliminarily confirmed glioma not only cause regional dysfunction, but also disturb long-distance functional connectivity, and the long-distance functional connectivity showed strong instability in patients with frontal glioma. Meanwhile, the altered functional indicators may compensate cognitive function in patients with frontal glioma.


Author(s):  
Maria Carbó-Carreté ◽  
Cristina Cañete-Massé ◽  
María D. Figueroa-Jiménez ◽  
Maribel Peró-Cebollero ◽  
Joan Guàrdia-Olmos

Background: The study of the Default Mode Network (DMN) has been shown to be sensitive for the recognition of connectivity patterns between the brain areas involved in this network. It has been hypothesized that the connectivity patterns in this network are related to different cognitive states. Purpose: In this study, we explored the relationship that can be estimated between these functional connectivity patterns of the DMN with the Quality-of-Life levels in people with Down syndrome, since no relevant data has been provided for this population. Methods: 22 young people with Down syndrome were evaluated; they were given a large evaluation battery that included the Spanish adaptation of the Personal Outcome Scale (POS). Likewise, fMRI sequences were obtained on a 3T resonator. For each subject, the DMN functional connectivity network was studied by estimating the indicators of complexity networks. The variability obtained in the Down syndrome group was studied by taking into account the Quality-of-Life distribution. Results: There is a negative correlation between the complexity of the connectivity networks and the Quality-of-Life values. Conclusions: The results are interpreted as evidence that, even at rest, connectivity levels are detected as already shown in the community population and that less intense connectivity levels correlate with higher levels of Quality of Life in people with Down syndrome.


2021 ◽  
Author(s):  
Zhen-Qi Liu ◽  
Bertha Vazquez-Rodriguez ◽  
R. Nathan Spreng ◽  
Boris Bernhardt ◽  
Richard F. Betzel ◽  
...  

The relationship between structural and functional connectivity in the brain is a key question in systems neuroscience. Modern accounts assume a single global structure-function relationship that persists over time. Here we show that structure-function coupling is dynamic and regionally heterogeneous. We use a temporal unwrapping procedure to identify moment-to-moment co-fluctuations in neural activity, and reconstruct time-resolved structure-function coupling patterns. We find that patterns of dynamic structure-function coupling are highly organized across the cortex. These patterns reflect cortical hierarchies, with stable coupling in unimodal and transmodal cortex, and dynamic coupling in intermediate regions, particularly in insular cortex (salience network) and frontal eye fields (dorsal attention network). Finally, we show that the variability of structure-function coupling is shaped by the distribution of connection lengths. The time-varying coupling of structural and functional connectivity points towards an informative feature of the brain that may reflect how cognitive functions are flexibly deployed and implemented.


2010 ◽  
Vol 2010 (1) ◽  
pp. 5-22
Author(s):  
Ralf Becker

The article examines the relationship between freedom, guilt and responsibility in Dostojewski’s and Sartre’s works. Both attribute a great measure of personal freedom to man. Therefore, they do not tolerate excuses. Whoever is free, carries responsibility and gets caught up in guilt. Dostojewski’s focus is mainly on guilt, Sartre’s is on responsibility. They share the conviction that we can delegate responsibility for our actions or our way of living neither to a whole, of which we are a part, like society (the ,milieu'), nor to a part, for which we are the whole, like the ,brain' or the ,genes'. In that sense, Dostojewski’s and Sartre’s attempts at an ethic of responsibility also offer convincing arguments against determinism.


Author(s):  
M.P. Sutunkova ◽  
B.A. Katsnelson ◽  
L.I. Privalova ◽  
S.N. Solovjeva ◽  
V.B. Gurvich ◽  
...  

We conducted a comparative assessment of the nickel oxide nanoparticles toxicity (NiO) of two sizes (11 and 25 nm) according to a number of indicators of the body state after repeated intraperitoneal injections of these particles suspensions. At equal mass doses, NiO nanoparticles have been found to cause various manifestations of systemic subchronic toxicity with a particularly pronounced effect on liver, kidney function, the body’s antioxidant system, lipid metabolism, white and red blood, redox metabolism, spleen damage, and some disorders of nervous activity allegedly related to the possibility of nickel penetration into the brain from the blood. The relationship between the diameter and toxicity of particles is ambiguous, which may be due to differences in toxicokinetics, which is controlled by both physiological mechanisms and direct penetration of nanoparticles through biological barriers and, finally, unequal solubility.


Sign in / Sign up

Export Citation Format

Share Document