Direct biosynthesis of adipic acid from a synthetic pathway in recombinantEscherichia coli

2014 ◽  
Vol 111 (12) ◽  
pp. 2580-2586 ◽  
Author(s):  
Jia-Le Yu ◽  
Xiao-Xia Xia ◽  
Jian-Jiang Zhong ◽  
Zhi-Gang Qian
2020 ◽  
Vol 59 ◽  
pp. 151-161 ◽  
Author(s):  
Wei Niu ◽  
Howard Willett ◽  
Joshua Mueller ◽  
Xinyuan He ◽  
Levi Kramer ◽  
...  

2020 ◽  
Author(s):  
SANJIB KAR ◽  
Sruti Mondal ◽  
Kasturi Sahu ◽  
Dilruba Hasina ◽  
Tapobrata Som ◽  
...  

<p>The synthesis of new graphene-type materials (<i>via</i> polymerization of porphyrin macrocycles) through a simple chemical synthetic pathway (at RT) has been demonstrated. This newly synthesized material can be dispersed in water with an average sheet size of few microns and with single layer thickness. As the porphyrin contains four inner ring nitrogen atoms thus the presented polymeric material will be close analogous of N-doped graphene. Porphyrin as the key component to synthesize layered graphene type continuous 2D structure has never been attempted before. </p> <p> </p>


Author(s):  
Jack Rowbotham ◽  
Oliver Lenz ◽  
Holly Reeve ◽  
Kylie Vincent

<p></p><p>Chemicals labelled with the heavy hydrogen isotope deuterium (<sup>2</sup>H) have long been used in chemical and biochemical mechanistic studies, spectroscopy, and as analytical tracers. More recently, demonstration of selectively deuterated drug candidates that exhibit advantageous pharmacological traits has spurred innovations in metal-catalysed <sup>2</sup>H insertion at targeted sites, but asymmetric deuteration remains a key challenge. Here we demonstrate an easy-to-implement biocatalytic deuteration strategy, achieving high chemo-, enantio- and isotopic selectivity, requiring only <sup>2</sup>H<sub>2</sub>O (D<sub>2</sub>O) and unlabelled dihydrogen under ambient conditions. The vast library of enzymes established for NADH-dependent C=O, C=C, and C=N bond reductions have yet to appear in the toolbox of commonly employed <sup>2</sup>H-labelling techniques due to requirements for suitable deuterated reducing equivalents. By facilitating transfer of deuterium atoms from <sup>2</sup>H<sub>2</sub>O solvent to NAD<sup>+</sup>, with H<sub>2</sub> gas as a clean reductant, we open up biocatalysis for asymmetric reductive deuteration as part of a synthetic pathway or in late stage functionalisation. We demonstrate enantioselective deuteration via ketone and alkene reductions and reductive amination, as well as exquisite chemo-control for deuteration of compounds with multiple unsaturated sites.</p><p></p>


2020 ◽  
Vol 36 (4) ◽  
pp. 87-93
Author(s):  
V.Yu. Reshetova ◽  
A.F. Krivoshchepov ◽  
I.A. Butorova ◽  
N.B. Feldman ◽  
S.V. Lutsenko ◽  
...  

Chitosan beads with colloidal silver nanoparticles inclued in the polymer matrix have been obtained by the introduction of chitosan into an acidified nanosilver sol. Dual interconnection of drops of the resulting solution was then carried out by ionotropic gelation at the first stage and covalent crosslinking of the polymer matrix with adipic acid at the second stage. The surface morphology of the obtained beads was studied by scanning electron microscopy. Data of Fourier transform IR spectroscopy confirmed the formation of covalent bonds between chitosan and adipic acid. The antibacterial activity of obtained beads against S. aureus and E. coli was evaluated using agar diffusion test. It was shown that the сhitosan beads modified with nanostructured silver exhibited an antibacterial effect against the tested strains, and they can be used as a basis for creating biodegradable wound healing dressings with a prolonged antibacterial effect. chitosan, silver nanoparticles, antibacterial activity, wound dressings This work was supported by the "Russian Academic Excellence Project 5-100". The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of the Scientific Project no. 18-29-18039.


2020 ◽  
Vol 17 (2) ◽  
pp. 85-89
Author(s):  
Francisco J. Hidalgo ◽  
Nathan A.P. Lorentz ◽  
TinTin B. Luu ◽  
Jonathan D. Tran ◽  
Praveen D. Wickremasinghe ◽  
...  

: Maltodextrins have an increasing number of biomedical and industrial applications due to their attractive physicochemical properties such as biodegradability and biocompatibility. Herein, we describe the development of a synthetic pathway and characterization of thiol-responsive maltodextrin conjugates with dithiomaleimide linkages. 19F NMR studies were also conducted to demonstrate the exchange dynamics of the dithiomaleimide-functionalized sugar end groups.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1761
Author(s):  
Aliya K. Mazitova ◽  
Guliya K. Aminova ◽  
Irina N. Vikhareva

The growing anthropogenic load on the lithosphere is currently characterized by the alienation of huge areas for solid domestic waste. One of the most common pollutants is traditional plastics with a degradation period of over 100 years. In connection with the increasing environmental requirements, polymer materials, along with a high set of technological and operational parameters, must be environmentally friendly and biodegradable. The development of polymer composite materials that undergo accelerated physicochemical and biological changes in the natural environment due to the introduction of biodegradable additives is one of the potential methods for processing synthetic materials and ensures the release of significant areas of fertile soils and lands from the steadily increasing amount of polymer waste. The use of adipic acid esters as PVC plasticizers contributes to the production of biodegradable composites. The article describes a method for obtaining new esters of adipic acid, presents the results of studying their properties for practical use in PVC composites, and assesses the economic efficiency of preventing damage to the environment when using them.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 140
Author(s):  
Ferdinando Zaccone ◽  
Valentina Venturi ◽  
Pier Paolo Giovannini ◽  
Claudio Trapella ◽  
Marco Narducci ◽  
...  

Recent studies have highlighted the therapeutic and ergogenic potential of the ketone body ester, (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate. In the present work, the enzymatic synthesis of this biological active compound is reported. The (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate has been produced through the transesterification of racemic ethyl 3-hydroxybutyrate with (R)-1,3-butanediol by exploiting the selectivity of Candida antarctica lipase B (CAL-B). The needed (R)-1,3-butanediol was in turn obtained from the kinetic resolution of the racemate achieved by acetylation with vinyl acetate, also in this case, thanks to the enantioselectivity of the CAL-B used as catalyst. Finally, the stereochemical inversion of the unreacted (S) enantiomers of the ethyl 3-hydroxybutyate and 1,3-butanediol accomplished by known procedure allowed to increase the overall yield of the synthetic pathway by incorporating up to 70% of the starting racemic reagents into the final product.


Sign in / Sign up

Export Citation Format

Share Document