scholarly journals Method for the statistical treatment of elemental and energy balances with application to steady-state continuous-culture growth of saccharomyces cerevisiae CBS 426 in the respiratory region

1980 ◽  
Vol 22 (5) ◽  
pp. 1097-1104 ◽  
Author(s):  
Hermine E. de Kok ◽  
J. A. Roels
2004 ◽  
Vol 383 (1) ◽  
pp. 139-147 ◽  
Author(s):  
Fernando MONJE-CASAS ◽  
Carmen MICHÁN ◽  
Carmen PUEYO

We report the co-ordinated fine-tune of mRNA molecules that takes place in yeast (Saccharomyces cerevisiae) in response to diverse environmental stimuli. We performed a systematic and refined quantification of the absolute expression patterns of 16 genes coding for thioredoxin- and glutathione-dependent redox system components. Quantifications were performed to examine the response to oxidants, to sudden temperature upshifts and in association with metabolic changes accompanying culture growth and to explore the contribution of mRNA decay rates to the differences observed in basal expression levels. Collectively, these quantifications show (i) vast differences in the steady-state amounts of the investigated transcripts, cTPxI being largely overexpressed compared with GPX1 during the exponential phase and GPX2 beyond this growth stage; (ii) drastic changes in the relative abundance of the transcripts in response to oxidants and heat shock; and (iii) a unique temporal expression profile for each transcript as cells proceed from exponential to stationary growth phase, yet with some general trends such as maximal or near-maximal basal amounts of most mRNA species at early growth stages when glucose concentration is high and cells are actively growing. Moreover, the results indicate that (i) the half-lives of the investigated transcripts are longer and distributed within a narrower range than previously reported global mRNA half-lives and (ii) transcriptional initiation may play an important role in modulating the significant alterations that most mRNAs exhibit in their steady-state levels along with culture growth.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 737-747 ◽  
Author(s):  
Jacques Archambault ◽  
David B Jansma ◽  
James D Friesen

Abstract In the yeast Saccharomyces cerevisiae, mutations in genes encoding subunits of RNA polymerase II (RNAPII) often give rise to a set of pleiotropic phenotypes that includes temperature sensitivity, slow growth and inositol auxotrophy. In this study, we show that these phenotypes can be brought about by a reduction in the intracellular concentration of RNAPII. Underproduction of RNAPII was achieved by expressing the gene (RPO21), encoding the largest subunit of the enzyme, from the LEU2 promoter or a weaker derivative of it, two promoters that can be repressed by the addition of leucine to the growth medium. We found that cells that underproduced RPO21 were unable to derepress fully the expression of a reporter gene under the control of the INO1 UAS. Our results indicate that temperature sensitivity, slow growth and inositol auxotrophy is a set of phenotypes that can be caused by lowering the steady-state amount of RNAPII; these results also lead to the prediction that some of the previously identified RNAPII mutations that confer this same set of phenotypes affect the assembly/stability of the enzyme. We propose a model to explain the hypersensitivity of INO1 transcription to mutations that affect components of the RNAPII transcriptional machinery.


1968 ◽  
Vol 14 (3) ◽  
pp. 290-292
Author(s):  
Herbert H. Eichhorn ◽  
Shigeyo Arikawa ◽  
Stephen Zamenhof

The cells of Bacillus subtilis, grown in minimal media, are known to become competent for transformation for a short period at a specific phase of ceil growth. In the present work the cells (strain 168 ind−) were grown in continuous culture (chemostat; glucose limiting, generation time 4 h, 37 °C). Aliquots were removed at 20- to 24-h intervals and immediately tested for competence. The viability (41 h) was 97%. The initial very low competence increased up to 200-fold within the 24 h and remained at this high, slowly decreasing level for at least 168 h. It is concluded that a long-lasting competence may develop and persist in the cells in continuous culture ("steady-state"), without demonstrable harmful effects to the population.


Author(s):  
Brian D. Follstad ◽  
R. Robert Balcarcel ◽  
Gregory Stephanopoulos ◽  
Daniel I. C. Wang

1987 ◽  
Vol 7 (8) ◽  
pp. 2914-2924
Author(s):  
A Hoekema ◽  
R A Kastelein ◽  
M Vasser ◽  
H A de Boer

The coding sequences of genes in the yeast Saccharomyces cerevisiae show a preference for 25 of the 61 possible coding triplets. The degree of this biased codon usage in each gene is positively correlated to its expression level. Highly expressed genes use these 25 major codons almost exclusively. As an experimental approach to studying biased codon usage and its possible role in modulating gene expression, systematic codon replacements were carried out in the highly expressed PGK1 gene. The expression of phosphoglycerate kinase (PGK) was studied both on a high-copy-number plasmid and as a single copy gene integrated into the chromosome. Replacing an increasing number (up to 39% of all codons) of major codons with synonymous minor ones at the 5' end of the coding sequence caused a dramatic decline of the expression level. The PGK protein levels dropped 10-fold. The steady-state mRNA levels also declined, but to a lesser extent (threefold). Our data indicate that this reduction in mRNA levels was due to destabilization caused by impaired translation elongation at the minor codons. By preventing translation of the PGK mRNAs by the introduction of a stop codon 3' and adjacent to the start codon, the steady-state mRNA levels decreased dramatically. We conclude that efficient mRNA translation is required for maintaining mRNA stability in S. cerevisiae. These findings have important implications for the study of the expression of heterologous genes in yeast cells.


1970 ◽  
Author(s):  
Joseph N. Dabes ◽  
Charles R. Wilke ◽  
Kenneth H. Sauer

Sign in / Sign up

Export Citation Format

Share Document