A fully validated HPLC–UV method for determination of sulthiame in human serum/plasma samples

2020 ◽  
Author(s):  
Katarzyna Madej ◽  
Łukasz Paprotny ◽  
Dorota Wianowska ◽  
Joanna Kasprzyk ◽  
Małgorzata Herman ◽  
...  
Keyword(s):  
Author(s):  
Shixing Zhu ◽  
Jiayuan Zhang ◽  
Zhihua Lv ◽  
Mingming Yu

Background: Apigenin, a natural plant flavone, has been shown to possess a variety of biological properties. Objective: In this report, a highly selective and sensitive LC-MS/MS method was developed and validated for the determination of apigenin in rat plasma. Methods: Analysts were separated on the HSS T3 column (1.8 μm 2.1×100 mm) using acetonitrile and 0.1% formic acid in 2 mM ammonium acetate buffer at a supply rate of 0.200 mL/min as eluent in gradient model. Results: Plasma samples were treated by protein precipitation using acetonitrile for the recovery ranging from 86.5% to 90.1% for apigenin. The calibration curves followed linearity in the concentration range of 0.50-500 ng/mL. The inter-day and intra-day precisions at different QC levels within 13.1% and the accuracies ranged from -10.6% to 8.6%. Conclusion: The assay has been successfully applied to the pharmacokinetic study of apigenin in rats.


2019 ◽  
Vol 15 (6) ◽  
pp. 568-573
Author(s):  
Soheil Sedaghat ◽  
Ommoleila Molavi ◽  
Akram Faridi ◽  
Ali Shayanfar ◽  
Mohammad Reza Rashidi

Background: Signal transducer and activator of transcription 3 (STAT3), an oncogenic protein found constitutively active in many types of human malignancies, is considered to be a promising target for cancer therapy. Objective: In this study for the first time, a simple and accurate method has been developed for the determination of a STAT3 dimerization inhibitor called stattic in aqueous and plasma samples. Methods: A reverse-phase high-performance liquid chromatography (RP-HPLC) composed of C18 column as stationary phase, and the mixture of acetonitrile (60%) and water (40%) as mobile phase with a UV detection at 215 nm were applied for quantification of stattic. The developed method was validated by Food and Drug Administration (FDA) guideline. Results: The method provided a linear range between 1-40 and 2.5-40 µg mL-1 for aqueous and plasma samples, respectively, with a correlation coefficient of 0.999. The accuracy (as recovery) of the developed method was found to be between 95-105% for aqueous medium and 85-115% for plasma samples. The precision (as relative standard deviation) for aqueous and plasma samples was less than 6% and 15%, respectively. The sensitivity of the developed method based on FDA guideline was 1 µg mL-1 for aqueous and 2.5 µg mL-1 for plasma samples. Conclusion: These results show that the established method is a fast and accurate quantification for stattic in aqueous and plasma samples.


2020 ◽  
Vol 17 ◽  
Author(s):  
Houli Li ◽  
Di Zhang ◽  
Xiaoliang Cheng ◽  
Qiaowei Zheng ◽  
Kai Cheng ◽  
...  

Background: The trough concentration (Cmin) of Imatinib (IM) is closely related to the treatment outcomes and adverse reactions of patients with gastrointestinal stromal tumors (GIST). However, the drug plasma level has great interand intra-individual variability, and therapeutic drug monitoring (TDM) is highly recommended. Objective: To develop a novel, simple, and economical two-dimensional liquid chromatography method with ultraviolet detector (2D-LC-UV) for simultaneous determination of IM and its major active metabolite, N-demethyl imatinib (NDIM) in human plasma, and then apply the method for TDM of the drug. Method: Sample was processed by simple protein precipitation. Two target analytes were separated on the one-dimension column, captured on the middle column, and then transferred to the two-dimension column for further analysis. The detection was performed at 264 nm. The column temperature was maintained at 40˚C and the injection volume was 500 μL. Totally 32 plasma samples were obtained from patients with GIST who were receiving IM. Method: Sample was processed by simple protein precipitation. Two target analytes were separated on the one-dimension column, captured on the middle column, and then transferred to the two-dimension column for further analysis. The detection was performed at 264 nm. The column temperature was maintained at 40˚C and the injection volume was 500 μL. Totally 32 plasma samples were obtained from patients with GIST who were receiving IM. Conclusion: The novel 2D-LC-UV method is simple, stable, highly automated and independent of specialized technicians, which greatly increases the real-time capability of routine TDM for IM in hospital.


Author(s):  
Hina Shamshad ◽  
Ali Sayqal ◽  
Jahan Zeb ◽  
Agha Zeeshan Mirza

Abstract A simple, accurate and precise RP-HPLC method was developed for the simultaneous determination of chloroquine, pyrimethamine and cetirizine hydrochloride concentrations in bulk drug and human serum. The assay was performed using a mobile phase of methanol: water (70:30) at pH of 2.8 ± 0.05 on the Purospher C-18 column with UV detection at 230 nm and rosuvastatin used as an internal standard. The retention times observed for chloroquine, pyrimethamine and cetirizine hydrochloride were 3.5, 2.5 and 5.5 minutes, respectively. The method was found to be specific for the assayed drugs showing a linear response in the concentration range of 1–100 μg mL−1 with coefficients of determination values of (r = 0.999). The method was developed and validated according to ICH guidelines. The method was used to monitor the serum samples and was found to be sensitive for therapeutic purposes, showing the potential to be a useful tool for routine analysis in laboratories.


Sign in / Sign up

Export Citation Format

Share Document