Development of an HPLC-UV Method for Quantification of Stattic

2019 ◽  
Vol 15 (6) ◽  
pp. 568-573
Author(s):  
Soheil Sedaghat ◽  
Ommoleila Molavi ◽  
Akram Faridi ◽  
Ali Shayanfar ◽  
Mohammad Reza Rashidi

Background: Signal transducer and activator of transcription 3 (STAT3), an oncogenic protein found constitutively active in many types of human malignancies, is considered to be a promising target for cancer therapy. Objective: In this study for the first time, a simple and accurate method has been developed for the determination of a STAT3 dimerization inhibitor called stattic in aqueous and plasma samples. Methods: A reverse-phase high-performance liquid chromatography (RP-HPLC) composed of C18 column as stationary phase, and the mixture of acetonitrile (60%) and water (40%) as mobile phase with a UV detection at 215 nm were applied for quantification of stattic. The developed method was validated by Food and Drug Administration (FDA) guideline. Results: The method provided a linear range between 1-40 and 2.5-40 µg mL-1 for aqueous and plasma samples, respectively, with a correlation coefficient of 0.999. The accuracy (as recovery) of the developed method was found to be between 95-105% for aqueous medium and 85-115% for plasma samples. The precision (as relative standard deviation) for aqueous and plasma samples was less than 6% and 15%, respectively. The sensitivity of the developed method based on FDA guideline was 1 µg mL-1 for aqueous and 2.5 µg mL-1 for plasma samples. Conclusion: These results show that the established method is a fast and accurate quantification for stattic in aqueous and plasma samples.

2012 ◽  
Vol 9 (1) ◽  
pp. 13-18 ◽  
Author(s):  
AK Kumar Hemanth ◽  
V Sudha ◽  
G Ramachandran

Introduction: Treatment of tuberculosis (TB) requires a combination of drugs. Isoniazid (INH) and pyrazinamide (PZA) are key components of the fi rst-line regimen used in the treatment of TB and monitoring these drug levels in plasma would help in better patient care. The objective of the study is to develop and validate a simple and rapid high performance liquid chromatographic method for simultaneous determination of INH and PZA in human plasma. Methodology: The method involved deproteinisation of plasma with para hydroxy benzaldehyde and trifl uoroacetic acid and analysis using a reversed-phase C8 column and UV detection at 267nm. The fl ow rate was set at 1.5 ml/min at ambient temperature. The accuracy, linearity, precision, specifi city, stability and recovery of the method were evaluated. The method was applied to estimate plasma INH and PZA collected from six children with TB. Results: Well resolved peaks of PZA and INH at retention times of 3.2 and 6.1 minutes respectively were obtained. The assay was linear from 0.25 - 10.0 ìg/ml for INH and 1.25 – 50.0 ìg/ml for PZA. The within-day and between-day relative standard deviation for standards were below 10%. The average recoveries of INH and PZA from plasma were 104 and 102% respectively. Conclusions: A rapid and accurate method for simultaneous determination of INH and PZA in plasma was validated. The assay spans the concentration range of clinical interest. The easy sample preparation and small sample size makes this assay highly suitable for pharmacokinetic studies of INH and PZA in TB patients. SAARC Journal of Tuberculosis, Lung Diseases & HIV/AIDS 2012; IX (1) 13-18 DOI: http://dx.doi.org/10.3126/saarctb.v9i1.6960


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jiayuan Shen ◽  
Qi Jia ◽  
Xuhua Huang ◽  
Guangzhe Yao ◽  
Wenjuan Ma ◽  
...  

This study developed a method for simultaneous determination of 13 elements of Semen Cuscutae (quercitrin, quercetin, hyperoside, caffeic acid, chlorogenic acid, luteolin, apigenin, kaempferol, isoquercitrin, cryptochlorogenic acid, isorhamnetin-3-O-glucoside, astragalin, and rutin) in rat plasma using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in the negative MRM mode. The analytes were analyzed with CORTECS®C18 column (4.6 × 150 mm, 2.7 μm) with mobile phases consisting of 0.1% formic acid in water (A) and acetonitrile (B). The intra- and interday precision of the target compounds were expressed as relative standard deviation (RSD) in the range of 0.5%–10.4%, and the accuracy of the target compounds was expressed as relative error (RE) not exceeding ±14.5% for all analytes. In the meantime, the extraction recovery of the target compounds in plasma samples ranged from 87.4% to 106.2% and matrix effect from 81.0% to 115.5%. The established method was successfully accomplished for the pharmacokinetic study of the analytes in rat plasma samples following oral administration of Semen Cuscutae extract, and the pharmacokinetic parameters of seven compounds were obtained.


2012 ◽  
Vol 40 (2) ◽  
pp. 109 ◽  
Author(s):  
Izabela RYCHLINSKA ◽  
Slawomira NOWAK

A simple, fast method of high-performance liquid chromatography for the determination and quantification of arbutin and hydroquinone in many different raw materials was developed and validated. The optimum conditions for the separation and detection of these two constituents were achieved on a LiChro-CARD 125-4 Superspher®100 RP-18 column with the water-methanol (gradient elution) mobile phase and recorded at 289 nm. The purities of peaks were verified by PDA analysis of impurities. The results of validation have shown that the HPLC method is stable and accurate for the simultaneous determination of arbutin and hydroquinone in extracts from various plants. The developed method gave a good sensitivity (LOD 1µg/ml for arbutin and 0.49 µg/ml for hydroquinone) with linearity R2 >0.9993 (for both). The relative standard deviation of the method was less than 2.53% for intra-day assays and 3.23% for inter-day assay, the accuracy of the recovery test ranged from 98.96% to 106.4%. This method was used in comparative qualitative analysis of arbutin and hydroquinone in 16 different raw materials from families Lamiaceae, Ericacaeae, Saxifragaceae, Rosaceae. The content of arbutin in B. ciliata, B. cordifolia and Ledum palustre was examined for the first time.


2020 ◽  
Vol 16 (8) ◽  
pp. 1106-1112
Author(s):  
Ibrahim A. Darwish ◽  
Nasr Y. Khalil ◽  
Mohammad AlZeer

Background: Axitinib (AXT) is a member of the new generation of the kinase inhibitor indicated for the treatment of advanced renal cell carcinoma. Its therapeutic benefits depend on assuring the good-quality of its dosage forms in terms of content and stability of the pharmaceutically active ingredient. Objective: This study was devoted to the development of a simple, sensitive and accurate stabilityindicating high-performance liquid chromatographic method with ultraviolet detection (HPLC-UV) for the determination of AXT in its bulk and dosage forms. Methods: Waters HPLC system was used. The chromatographic separation of AXT, internal standard (olaparib), and degradation products were performed on the Nucleosil CN column (250 × 4.6 mm, 5 μm). The mobile phase consisted of water:acetonitrile:methanol (40:40:20, v/v/v) with a flow rate of 1 ml/min, and the UV detector was set at 225 nm. AXT was subjected to different accelerated stress conditions and the degradation products, when any, were completely resolved from the intact AXT. Results: The method was linear (r = 0.9998) in the concentration range of 5-50 μg/ml. The limits of detection and quantitation were 0.85 and 2.57 μg/ml, respectively. The accuracy of the method, measured as recovery, was in the range of 98.0-103.6% with relative standard deviations in the range of 0.06-3.43%. The results of stability testing revealed that AXT was mostly stable in neutral and oxidative conditions; however, it was unstable in alkaline and acidic conditions. The kinetics of degradation were studied, and the kinetic rate constants were determined. The proposed method was successfully applied for the determination of AXT in bulk drug and dosage forms. Conclusions: A stability-indicating HPLC-UV method was developed and validated for assessing AXT stability in its bulk and dosage forms. The method met the regulatory requirements of the International Conference on Harmonization (ICH) and the Food and Drug Administration (FDA). The results demonstrated that the method would have great value when applied in quality control and stability studies for AXT.


2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2012 ◽  
Vol 550-553 ◽  
pp. 1173-1176
Author(s):  
Hui Qing Sun ◽  
Yi Qiang Li ◽  
Guang Jun Xu ◽  
Xiao Zhen ◽  
Jin Li Xu ◽  
...  

Abstract. [Aims] A high performance liquid chromatography (HPLC) was presented for determination of fentin acetate residue in beet and soils. [Methods] Fentin acetate was extracted from beet plants and soils with hydrochloric acid and acetonitrile, followed by a second extraction in dichloromethane, purified by acid aluminium oxide with methanol eluting, then dissolved by concentration and dilution with acetoneitrile. A HPLC with UV detection at 220 nm and a Waters Sun FireTM-C18 column, which was eluted with methanol and 0.5% phosphoric acid aqueous solution and was used based on an external standard calibration curve. [Results] The results showed that the average recoveries were 88.4-95.6% for beet plants and 91.2-91.8% for soils. The relative standard deviations were 2.0-4.5% and 4.3-5.3% respectively. The minimum detectable level was 1.6×10-10g, the lowest detectable concentration was 0.02mg/kg. [Conclusions] The method is convenient and can meet the requirement of residual analysis and also provide reference for other crops.


Author(s):  
Nabil N. AL-Hashimi ◽  
Amjad H. El-Sheikh ◽  
Manal I. Alruwad ◽  
Mohanad M. Odeh

Background: A simple and powerful microextraction procedure, the solvent bar microextraction (SBME), was used for the simultaneous determination of two diuretics, furosemide and spironolactone in human urine and plasma samples, using high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Methods: The appropriate amount (2 µL) of 1-octanol as an organic solvent confined within (2.5 cm) of a porous hollow fiber micro-tube, sealed at both ends was used for this procedure. The conditions for the SBME were optimized in water and the analytical performance were examined in spiked human urine and plasma samples. Results: The optimized method exhibited good linearity (R2 > 0.997) over the studied range of higher than 33 to 104 µg L-1 for furosemide and spironolactone in urine and plasma samples, illustrating a satisfactory precision level with RSD values between 2.1% and 9.1%. Discussion: The values of the limits of detection were found to be in the range of 6.39 to 9.67 µg L-1, and extraction recovery˃ 58.8% for both diuretics in urine and plasma samples. The applicability and effectiveness of the proposed method for the determination of furosemide and spironolactone in patient urine samples were tested. Conclusion: In comparison with reference methods, the attained results demonstrated that SBME combined with HPLC-DAD was proved to be simple, inexpensive, and promising analytical technology for the simultaneous determination of furosemide and spironolactone in urine and plasma samples.


Author(s):  
V.L.N. Balaji Gupta Tiruveedhi ◽  
Venkateswara Rao Battula ◽  
Kishore Babu Bonige ◽  
Tejeswarudu B.

This research work was designed to establish and validate a novel stability indicating RP-HPLC method for the combined determination of Benidipine hydrochloride (BHE) and Nebivolol hydrochloride (NHE) in bulk and tablets, dependent on ICH guidelines.The assay method to analyse BHE and NHE was optimized with isocratic elution using acetonitrile: 0.1M acetate buffer (45:55, pH 5.1), Lichrospher ODS RP-18 column and flow pace of 1 ml/min. Total time for single run was 14 min. The injection quantity was 20μl, and was detected at 249nm. The method was verified on a concentration series of 1.25-10μg/ml (NHE) and 1.0-10μg/ml (BHE) for precision, accuracy and linearity. The LOD values were 0.059µg/ml and 0.028µg/ml for NHE and BHE, respectively. The LOQ values were 0.196µg/ml for NHE and 0.094µg/ml for BHE. The recovery percentages were 98.60-100.11% (BHE) and 98.94-101.50% (NHE) with relative standard deviation 0.250-0.694% (BHE) and 0.183-0.400% (NHE). The method was also observed to be efficient, and was sufficiently specific to measure BHE and NHE in the presence of stress-produced degradation products.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2869 ◽  
Author(s):  
Iván Taima-Mancera ◽  
Priscilla Rocío-Bautista ◽  
Jorge Pasán ◽  
Juan Ayala ◽  
Catalina Ruiz-Pérez ◽  
...  

Four metal-organic frameworks (MOFs), specifically UiO-66, UiO-66-NH2, UiO-66-NO2, and MIL-53(Al), were synthesized, characterized, and used as sorbents in a dispersive micro-solid phase extraction (D-µSPE) method for the determination of nine pollutants of different nature, including drugs, phenols, polycyclic aromatic hydrocarbons, and personal care products in environmental waters. The D-µSPE method, using these MOFs as sorbents and in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD), was optimized. The optimization study pointed out to UiO-66-NO2 as the best MOF to use in the multi-component determination. Furthermore, the utilization of isoreticular MOFs based on UiO-66 with the same topology but different functional groups, and MIL-53(Al) to compare with, allowed us for the first time to evaluate the influence of such functionalization of the ligand with regards to the efficiency of the D-µSPE-HPLC-DAD method. Optimum conditions included: 20 mg of UiO-66-NO2 MOF in 20 mL of the aqueous sample, 3 min of agitation by vortex and 5 min of centrifugation, followed by the use of only 500 µL of acetonitrile as desorption solvent (once the MOF containing analytes was separated), 5 min of vortex and 5 min of centrifugation. The validation of the D-µSPE-HPLC-DAD method showed limits of detection down to 1.5 ng·L−1, average relative recoveries of 107% for a spiked level of 1.50 µg·L−1, and inter-day precision values with relative standard deviations lower than 14%, for the group of pollutants considered.


2013 ◽  
Vol 448-453 ◽  
pp. 406-408
Author(s):  
Jing Liu ◽  
Xiao Na Ji ◽  
Qing Kai Ren ◽  
Sheng Shu Ai ◽  
Li Jun Wan ◽  
...  

We established a method fordetermination of nitrate in water by High Performance Liquid Chromatography(HPLC). The sample was analysed by HPLC-ADA and was quantitated by externalstandard method after being simply processed. This methd has the advantages ofhigh separation efficiency and fast analysis. The experiment result showed thatthe linearly dependent coefficient was0.994, the recovery rate was between 98.7%~105.7%,the relative standard deviation(RSD)wasless than 2.1 %, and the lowest detectable limit is 0.01ng (S/N=1.6).


Sign in / Sign up

Export Citation Format

Share Document