Serum Compatible Spermine‐based Cationic Lipids with Non‐identical Hydrocarbon Tails Mediate High Transfection Efficiency

ChemBioChem ◽  
2022 ◽  
Author(s):  
Chopaka Thongbamrer ◽  
Wanlapa Roobsoong ◽  
Jetsumon Sattabongkot ◽  
Praneet Opanasopit ◽  
Boon-ek Yingyongnarongkul
2011 ◽  
Vol 17 (11) ◽  
pp. 3287-3295 ◽  
Author(s):  
Widchaya Radchatawedchakoon ◽  
Aungkana Krajarng ◽  
Nattisa Niyomtham ◽  
Ramida Watanapokasin ◽  
Boon‐ek Yingyongnarongkul

2009 ◽  
Vol 17 (1) ◽  
pp. 176-188 ◽  
Author(s):  
Boon-ek Yingyongnarongkul ◽  
Widchaya Radchatawedchakoon ◽  
Aungkana Krajarng ◽  
Ramida Watanapokasin ◽  
Apichart Suksamrarn

2020 ◽  
Vol 27 (8) ◽  
pp. 698-710
Author(s):  
Roya Cheraghi ◽  
Mahboobeh Nazari ◽  
Mohsen Alipour ◽  
Saman Hosseinkhani

Gene-based therapy largely relies on the vector type that allows a selective and efficient transfection into the target cells with maximum efficacy and minimal toxicity. Although, genes delivered utilizing modified viruses transfect efficiently and precisely, these vectors can cause severe immunological responses and are potentially carcinogenic. A promising method of overcoming this limitation is the use of non-viral vectors, including cationic lipids, polymers, dendrimers, and peptides, which offer potential routes for compacting DNA for targeted delivery. Although non-viral vectors exhibit reduced transfection efficiency compared to their viral counterpart, their superior biocompatibility, non-immunogenicity and potential for large-scale production make them increasingly attractive for modern therapy. There has been a great deal of interest in the development of biomimetic chimeric peptides. Biomimetic chimeric peptides contain different motifs for gene translocation into the nucleus of the desired cells. They have motifs for gene targeting into the desired cell, condense DNA into nanosize particles, translocate the gene into the nucleus and enhance the release of the particle into the cytoplasm. These carriers were developed in recent years. This review highlights the stepwise development of the biomimetic chimeric peptides currently being used in gene delivery.


Author(s):  
A. A. Mikheev ◽  
E. V. Shmendel ◽  
E. S. Zhestovskaya ◽  
G. V. Nazarov ◽  
M. A. Maslov

Objectives. Gene therapy is based on the introduction of genetic material into cells, tissues, or organs for the treatment of hereditary or acquired diseases. A key factor in the success of gene therapy is the development of delivery systems that can efficiently transfer genetic material to the place of their therapeutic action without causing any associated side effects. Over the past 10 years, significant effort has been directed toward creating more efficient and biocompatible vectors capable of transferring nucleic acids (NAs) into cells without inducing an immune response. Cationic liposomes are among the most versatile tools for delivering NAs into cells; however, the use of liposomes for gene therapy is limited by their low specificity. This is due to the presence of various biological barriers to the complex of liposomes with NA, including instability in biological fluids, interaction with serum proteins, plasma and nuclear membranes, and endosomal degradation. This review summarizes the results of research in recent years on the development of cationic liposomes that are effective in vitro and in vivo. Particular attention is paid to the individual structural elements of cationic liposomes that determine the transfection efficiency and cytotoxicity. The purpose of this review was to provide a theoretical justification of the most promising choice of cationic liposomes for the delivery of NAs into eukaryotic cells and study the effect of the composition of cationic lipids (CLs) on the transfection efficiency in vitro.Results. As a result of the analysis of the related literature, it can be argued that one of the most promising delivery systems of NAs is CL based on cholesterol and spermine with the addition of a helper lipid DOPE. In addition, it was found that varying the composition of cationic liposomes, the ratio of CL to NA, or the size and zeta potential of liposomes has a significant effect on the transfection efficiency.Conclusions. Further studies in this direction should include optimization of the conditions for obtaining cationic liposomes, taking into account the physicochemical properties and established laws. It is necessary to identify mechanisms that increase the efficiency of NA delivery in vitro by searching for optimal structures of cationic liposomes, determining the ratio of lipoplex components, and studying the delivery efficiency and properties of multicomponent liposomes.


2020 ◽  
Vol 8 (12) ◽  
pp. 2483-2494
Author(s):  
Kun Zeng ◽  
Li Ma ◽  
Wenxiu Yang ◽  
Shan Lei ◽  
Mozhen Wang ◽  
...  

Guanidinated-fluorinated α-polylysine-modified organosilica nanoparticles can form a novel raisin-bread-like gene vector, which is disintegrated in cells by GSH to show high transfection efficiency.


2019 ◽  
Vol 20 (21) ◽  
pp. 5491 ◽  
Author(s):  
Patil ◽  
Gao ◽  
Lin ◽  
Li ◽  
Dang ◽  
...  

Gene therapy is manipulation in/of gene expression in specific cells/tissue to treat diseases. This manipulation is carried out by introducing exogenous nucleic acids, such as DNA or RNA, into the cell. Because of their negative charge and considerable larger size, the delivery of these molecules, in general, should be mediated by gene vectors. Non-viral vectors, as promising delivery systems, have received considerable attention due to their low cytotoxicity and non-immunogenicity. As research continued, more and more functional non-viral vectors have emerged. They not only have the ability to deliver a gene into the cells but also have other functions, such as the performance of fluorescence imaging, which aids in monitoring their progress, targeted delivery, and biodegradation. Recently, many reviews related to non-viral vectors, such as polymers and cationic lipids, have been reported. However, there are few reviews regarding functional non-viral vectors. This review summarizes the common functional non-viral vectors developed in the last ten years and their potential applications in the future. The transfection efficiency and the transport mechanism of these materials were also discussed in detail. We hope that this review can help researchers design more new high-efficiency and low-toxicity multifunctional non-viral vectors, and further accelerate the progress of gene therapy.


2014 ◽  
Vol 25 (25) ◽  
pp. 255102 ◽  
Author(s):  
Ming-Zhen Zhang ◽  
Cheng Li ◽  
Bi-Yun Fang ◽  
Ming-Hao Yao ◽  
Qiong-Qiong Ren ◽  
...  

2011 ◽  
Vol 144 (3-4) ◽  
pp. 179-186 ◽  
Author(s):  
Xinxin Zhao ◽  
Huali Su ◽  
Guangwen Yin ◽  
Xianyong Liu ◽  
Zhengzhu Liu ◽  
...  

2017 ◽  
Vol 5 (11) ◽  
pp. 2328-2336 ◽  
Author(s):  
Mathias Dimde ◽  
Falko Neumann ◽  
Felix Reisbeck ◽  
Svenja Ehrmann ◽  
Jose Luis Cuellar-Camacho ◽  
...  

An advanced cationic carrier system which combines high transfection efficiency with low cytotoxicity and a control over the release of the encapsulated genetic material by the reduction of the multivalent architecture upon pH triggered degradation was developed.


Sign in / Sign up

Export Citation Format

Share Document