scholarly journals A Highly Active PBP-Iridium Catalyst for the Dehydrogenation of Dimethylamine-Borane: Catalytic Performance and Mechanism

ChemCatChem ◽  
2017 ◽  
Vol 9 (13) ◽  
pp. 2457-2462 ◽  
Author(s):  
Enrique Huang Kwan ◽  
Hayato Ogawa ◽  
Makoto Yamashita
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Gan ◽  
Jingxiu Yang ◽  
David Morris ◽  
Xuefeng Chu ◽  
Peng Zhang ◽  
...  

AbstractActivation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24097-24102 ◽  
Author(s):  
Betül Çelik ◽  
Yunus Yıldız ◽  
Hakan Sert ◽  
Esma Erken ◽  
Yagmur Koşkun ◽  
...  

Monodispersed PdCo@PVP NPs showed record catalytic activity, giving the best catalytic performance yet with a very high turnover frequency.


2006 ◽  
Vol 6 (2) ◽  
pp. 58 ◽  
Author(s):  
Didi Dwi Anggoro ◽  
Nor Aishah Saidina Amin

The direct conversion of natural gas-in particular, its principal component, methane into useful products has been the subject of intense study over the past decades. However, commercialization of this process is still not viable because its conversion and selectivity potentials remain low. Thus, the search continues to come up with a suitable catalyst that allows methane to be oxidized in a controlled environment to yield a high percentage of higher hydrocarbons. ZSM-5 zeolite has been known to be a suitable catalyst for olefin oligomerization. Previous studies, however, have indicated that ZSM-5 zeolites are not resistant to high temperatures. In this work, ZSM-5 was modified with copper and tungsten to develop a highly active and heat-resistant bifunctional oxidative acid catalyst. The oxidation of methane was performed over W/Cu/HZSM-5 catalyst and the results compared with the catalytic performance of W/ HZSM-5 and HZSM-5 catalysts. The metal oxide on the catalyst surface led to enhanced conversion of Hz and CO to CZ-3 ydrocarbons and, hence, reduced HzO selectivity. Inh the liquid hydrocarbons, Cs+ selectivity increased with increasing amount of surface Bn1Jnstedacid sites. The experimental results indicated higher methane conversion and liquid hydrocarbon selectivity than that of W/3.0Cu/HZSM-5 catalyst.


2018 ◽  
Vol 8 (3) ◽  
pp. 806-816 ◽  
Author(s):  
Shaohua Xie ◽  
Yuxi Liu ◽  
Jiguang Deng ◽  
Jun Yang ◽  
Xingtian Zhao ◽  
...  

The adsorbed o-xylene species can immediately react with active oxygen species at the highly active Pd–CoO interface between Pd NPs and meso-CoO, thus resulting in good catalytic performance of Pd/meso-CoO for o-xylene catalytic combustion.


2021 ◽  
Vol 875 ◽  
pp. 193-199
Author(s):  
Ahmad Shahbaz ◽  
Ali Afaf ◽  
Nawaz Tahir ◽  
Ullah Abid ◽  
Saher Saim

A highly active Platinum Group Metal (PGM) and non-PGM electrocatalysts with thermally extruded nanotubes have been prepared for Proton Exchange Membrane (PEM) fuel cell by sintering Nickel zeolitic imidazole framework (Ni-ZIF). Preeminent electro-catalytic activities have been observed through single fuel cell tests and rotating disk electrode (RDE). This study involves the comparison of Oxygen Reduction Reaction (ORR) activities and fuel cell (FC) test station performance of two catalyst Nickel and Platinum mixed Nickel nanotubes (Ni NT, Ni/Pt NT) respectively. The acidic cells with corresponding Ni and Ni/Pt catalysts delivers peak power densities of 325 mWcm-2 and 455 mWcm-2 at 75 °C inside fuel cell. Our results indicate that, the synthesized Nickel nanotubes has profound effect on catalytic performance of both PGM and non-PGM electro catalysts.


2018 ◽  
Vol 8 (21) ◽  
pp. 5646-5656 ◽  
Author(s):  
Kai Wang ◽  
Mei Dong ◽  
Xianjun Niu ◽  
Junfen Li ◽  
Zhangfeng Qin ◽  
...  

The regulation of the morphology of HZSM-5 zeolite supports on the modification effect of zinc, as well as their subsequent catalytic performance for the methanol-to-aromatics (MTA) process were investigated.


Sign in / Sign up

Export Citation Format

Share Document