scholarly journals An Assay for Screening Potential Drug Candidates for Alzheimer's Disease That Act as Chaperones of the Transthyretin and Amyloid‐β Peptides Interaction

2020 ◽  
Vol 26 (72) ◽  
pp. 17462-17469 ◽  
Author(s):  
Ellen Y. Cotrina ◽  
Ana Gimeno ◽  
Jordi Llop ◽  
Jesús Jiménez‐Barbero ◽  
Jordi Quintana ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2351 ◽  
Author(s):  
Veronika Prikhodko ◽  
Daria Chernyuk ◽  
Yurii Sysoev ◽  
Nikita Zernov ◽  
Sergey Okovityi ◽  
...  

Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models. Thus, in order to protect neurons from Alzheimer’s disease and cerebral ischemia, proper TRPC6 channels modulators have to be used. TRPC6 channels modulators are an emerging research field. New chemical structures modulating the activity of TRPC6 channels are being currently discovered. The recent publication of the cryo-EM structure of TRPC6 channels should speed up the discovery process even more. This review summarizes the currently available information about potential drug candidates that may be used as basic structures to develop selective, highly potent TRPC6 channel modulators to treat neurodegenerative disorders, such as Alzheimer’s disease and cerebral ischemia.


2021 ◽  
Vol 22 (19) ◽  
pp. 10448
Author(s):  
Greta Elovsson ◽  
Liza Bergkvist ◽  
Ann-Christin Brorsson

Alzheimer’s disease is a widespread and devastating neurological disorder associated with proteotoxic events caused by the misfolding and aggregation of the amyloid-β peptide. To find therapeutic strategies to combat this disease, Drosophila melanogaster has proved to be an excellent model organism that is able to uncover anti-proteotoxic candidates due to its outstanding genetic toolbox and resemblance to human disease genes. In this review, we highlight the use of Drosophila melanogaster to both study the proteotoxicity of the amyloid-β peptide and to screen for drug candidates. Expanding the knowledge of how the etiology of Alzheimer’s disease is related to proteotoxicity and how drugs can be used to block disease progression will hopefully shed further light on the field in the search for disease-modifying treatments.


2020 ◽  
Vol 26 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Sharifa Hasana ◽  
Jamil Ahmad ◽  
Md. Farhad Hossain ◽  
Md. Mosiqur Rahman ◽  
...  

: Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies are found yet. Over the last few decades, research on AD has mainly highlighted in pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques, made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs), made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus showing a promising candidate for inflammation-based AD therapy. Recent data reveal that phytochemicals mainly polyphenols compounds exhibit potential neuroprotective functions and it may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 587 ◽  
Author(s):  
Rajeshwari Rajeshwari ◽  
Karam Chand ◽  
Emanuel Candeias ◽  
Sandra Cardoso ◽  
Sílvia Chaves ◽  
...  

Research on neurodegenerative brain disorders, namely the age-dependent Alzheimer’s disease (AD), has been intensified in the last decade due to the absence of a cure and the recognized increasing of life expectancy for populations. To address the multifactorial nature and complexity of AD, a multi-target-directed ligand approach was herein employed, by designing a set of six selected hybrids (14–19) that combine in the same entity two pharmacophores: tacrine (TAC) and 2-phenylbenzothiazole (PhBTA). The compounds contain a methoxy substituent at the PhBTA moiety and have a variable length linker between that and the TAC moiety. The docking studies showed that all the compounds assure a dual-binding mode of acetylcholinesterase (AChE) inhibition, establishing π-stacking and H-bond interactions with aminoacid residues at both active binding sites of the enzyme (CAS and PAS). The bioassays revealed that the designed compounds display excellent AChE inhibitory activity in the sub-micromolar range (0.06–0.27 μM) and moderate inhibition values for amyloid-β (Aβ) self-aggregation (27–44.6%), compounds 14 and 15 being the lead compounds. Regarding neuroprotective effects in neuroblastoma cells, compounds 15, 16 and 19 revealed the capacity to prevent Aβ-induced toxicity, but compound 16 showed the highest neuroprotective effect. Overall these hybrid compounds, in particular 15 and 16, with promising multitarget anti-AD ability, encourage further pursuing studies on this type of TAC-PhBTA derivatives for potential AD therapy.


2019 ◽  
Vol 17 (4) ◽  
pp. 352-365 ◽  
Author(s):  
Puneet Talwar ◽  
Renu Gupta ◽  
Suman Kushwaha ◽  
Rachna Agarwal ◽  
Luciano Saso ◽  
...  

Alzheimer’s disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug- Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein– Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with a suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates.


Sign in / Sign up

Export Citation Format

Share Document