Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease

2020 ◽  
Vol 26 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Sharifa Hasana ◽  
Jamil Ahmad ◽  
Md. Farhad Hossain ◽  
Md. Mosiqur Rahman ◽  
...  

: Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies are found yet. Over the last few decades, research on AD has mainly highlighted in pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques, made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs), made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus showing a promising candidate for inflammation-based AD therapy. Recent data reveal that phytochemicals mainly polyphenols compounds exhibit potential neuroprotective functions and it may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.


1995 ◽  
Vol 306 (2) ◽  
pp. 599-604 ◽  
Author(s):  
E M Castano ◽  
F Prelli ◽  
T Wisniewski ◽  
A Golabek ◽  
R A Kumar ◽  
...  

A central event in Alzheimer's disease is the conformational change from normally circulating soluble amyloid beta peptides (A beta) and tau proteins into amyloid fibrils, in the form of senile plaques and neurofibrillary tangles respectively. The apolipoprotein E (apoE) gene locus has recently been associated with late-onset Alzheimer's disease. It is not know whether apoE plays a direct role in the pathogenesis of the disease. In the present work we have investigated whether apoE can affect the known spontaneous in vitro formation of amyloid-like fibrils by synthetic A beta analogues using a thioflavine-T assay for fibril formation, electron microscopy and Congo Red staining. Our results show that, under the conditions used, apoE directly promotes amyloid fibril formation, increasing both the rate of fibrillogenesis and the total amount of amyloid formed. ApoE accelerated fibril formation of both wild-type A beta-(1-40) and A beta-(1-40A), an analogue created by the replacement of valine with alanine at residue 18, which alone produces few amyloid-like fibrils. However, apoE produced only a minimal effect on A beta-(1-40Q), found in the Dutch variant of Alzheimer's disease. When recombinant apoE isoforms were used, apoE4 was more efficient than apoE3 at enhancing amyloid formation. These in vitro observations support the hypothesis that apoE acts as a pathological chaperone, promoting the beta-pleated-sheet conformation of soluble A beta into amyloid fibres, and provide a possible explanation for the association of the apoE4 genetic isoform with Alzheimer's disease.



2020 ◽  
Vol 68 (6) ◽  
pp. 1135-1140 ◽  
Author(s):  
Allison Bethanne Reiss ◽  
Amy D Glass ◽  
Thomas Wisniewski ◽  
Benjamin Wolozin ◽  
Irving H Gomolin ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative brain disorder associated with relentlessly progressive cognitive impairment and memory loss. AD pathology proceeds for decades before cognitive deficits become clinically apparent, opening a window for preventative therapy. Imbalance of clearance and buildup of amyloid β and phosphorylated tau proteins in the central nervous system is believed to contribute to AD pathogenesis. However, multiple clinical trials of treatments aimed at averting accumulation of these proteins have yielded little success, and there is still no disease-modifying intervention. Here, we discuss current knowledge of AD pathology and treatment with an emphasis on emerging biomarkers and treatment strategies.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yan Zhao ◽  
Baolu Zhao

Alzheimer's disease (AD) is the most common neurodegenerative disease that causes dementia in the elderly. Patients with AD suffer a gradual deterioration of memory and other cognitive functions, which eventually leads to a complete incapacity and death. A complicated array of molecular events has been implicated in the pathogenesis of AD. The major pathological characteristics of AD brains are the presence of senile plaques, neurofibrillary tangles, and neuronal loss. Growing evidence has demonstrated that oxidative stress is an important factor contributing to the initiation and progression of AD. However, the mechanisms that lead to the disruption of redox balance and the sources of free radicals remain elusive. The excessive reactive oxygen species may be generated from mechanisms such as mitochondria dysfunction and/or aberrant accumulation of transition metals, while the abnormal accumulation of Abeta and tau proteins appears to promote the redox imbalance. The resulted oxidative stress has been implicated in Abeta- or tau-induced neurotoxicity. In addition, evidence has suggested that oxidative stress may augment the production and aggregation of Abeta and facilitate the phosphorylation and polymerization of tau, thus forming a vicious cycle that promotes the initiation and progression of AD.



2021 ◽  
Author(s):  
Shu-qin Cao ◽  
Yahyah Aman ◽  
Evandro Fei Fang ◽  
Tewin Tencomnao

Abstract Alzheimer’s disease (AD) is a common and devastating disease characterized by pathological aggregations of beta-amyloid (Aβ) plaques extracellularly, and Tau tangles intracellularly. While our understandings of the aetiologies of AD have greatly expanded over the decades, there is no drug available to stop disease progression. Here, we demonstrate the potential of P. edulis pericarp extract in protecting against Aβ-mediated neurotoxicity in mammalian cells and Caenorhabditis elegans models of AD. We show P. edulis pericarp protects against memory deficit, neuronal loss, and promotes longevity in the Aβ model of AD via stimulation of mitophagy, a selective cellular clearance of damaged and dysfunctional mitochondria. P. edulis pericarp also restores memory and increases neuronal resilience in a C. elegans Tau model of AD. While defective mitophagy-induced accumulation of damaged mitochondria contributes to AD progression, P. edulis pericarp improves mitochondrial homeostasis through NIX/DCT1-dependent mitophagy and SOD3-dependent mitochondrial resilience, both via increased nuclear translocation of the upstream transcriptional regulator FOXO3/DAF-16. Further studies to identify active molecules in P. edulis pericarp that could maintain neuronal mitochondrial homeostasis may enable the development of potential drug candidates for AD.



2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.



2021 ◽  
pp. 1-22
Author(s):  
Mariana Van Zeller ◽  
Diogo M. Dias ◽  
Ana M. Sebastião ◽  
Cláudia A. Valente

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease commonly diagnosed among the elderly population. AD is characterized by the loss of synaptic connections, neuronal death, and progressive cognitive impairment, attributed to the extracellular accumulation of senile plaques, composed by insoluble aggregates of amyloid-β (Aβ) peptides, and to the intraneuronal formation of neurofibrillary tangles shaped by hyperphosphorylated filaments of the microtubule-associated protein tau. However, evidence showed that chronic inflammatory responses, with long-lasting exacerbated release of proinflammatory cytokines by reactive glial cells, contribute to the pathophysiology of the disease. NLRP3 inflammasome (NLRP3), a cytosolic multiprotein complex sensor of a wide range of stimuli, was implicated in multiple neurological diseases, including AD. Herein, we review the most recent findings regarding the involvement of NLRP3 in the pathogenesis of AD. We address the mechanisms of NLRP3 priming and activation in glial cells by Aβ species and the potential role of neurofibrillary tangles and extracellular vesicles in disease progression. Neuronal death by NLRP3-mediated pyroptosis, driven by the interneuronal tau propagation, is also discussed. We present considerable evidence to claim that NLRP3 inhibition, is undoubtfully a potential therapeutic strategy for AD.



Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 373
Author(s):  
Marisa Silva ◽  
Paula Seijas ◽  
Paz Otero

Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sara Mahdiabadi ◽  
Sara Momtazmanesh ◽  
George Perry ◽  
Nima Rezaei

Abstract Alzheimer’s disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.



2021 ◽  
Vol 22 (22) ◽  
pp. 12181
Author(s):  
Guido Santos ◽  
Mario Díaz

Alzheimer’s disease (AD) is a neurodegenerative disease caused by abnormal functioning of critical physiological processes in nerve cells and aberrant accumulation of protein aggregates in the brain. The initial cause remains elusive—the only unquestionable risk factor for the most frequent variant of the disease is age. Lipid rafts are microdomains present in nerve cell membranes and they are known to play a significant role in the generation of hallmark proteinopathies associated to AD, namely senile plaques, formed by aggregates of amyloid β peptides. Recent studies have demonstrated that human brain cortex lipid rafts are altered during early neuropathological phases of AD as defined by Braak and Braak staging. The lipid composition and physical properties of these domains appear altered even before clinical symptoms are detected. Here, we use a coarse grain molecular dynamics mathematical model to predict the dimensional evolution of these domains using the experimental data reported by our group in human frontal cortex. The model predicts significant size and frequency changes which are detectable at the earliest neuropathological stage (ADI/II) of Alzheimer’s disease. Simulations reveal a lower number and a larger size in lipid rafts from ADV/VI, the most advanced stage of AD. Paralleling these changes, the predictions also indicate that non-rafts domains undergo simultaneous alterations in membrane peroxidability, which support a link between oxidative stress and AD progression. These synergistic changes in lipid rafts dimensions and non-rafts peroxidability are likely to become part of a positive feedback loop linked to an irreversible amyloid burden and neuronal death during the evolution of AD neuropathology.



Diseases ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
Paloma Fernández-Sanz ◽  
Daniel Ruiz-Gabarre ◽  
Vega García-Escudero

As life expectancy is growing, neurodegenerative disorders, such as Alzheimer’s disease, are increasing. This disease is characterised by the accumulation of intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein, senile plaques composed of an extracellular deposit of β-amyloid peptide (Aβ), and neuronal loss. This is accompanied by deficient mitochondrial function, increased oxidative stress, altered inflammatory response, and autophagy process impairment. The present study gathers scientific evidence that demonstrates that specific nutrients exert a direct effect on both Aβ production and Tau processing and their elimination by autophagy activation. Likewise, certain nutrients can modulate the inflammatory response and the oxidative stress related to the disease. However, the extent to which these effects come with beneficial clinical outcomes remains unclear. Even so, several studies have shown the benefits of the Mediterranean diet on Alzheimer’s disease, due to its richness in many of these compounds, to which can be attributed their neuroprotective properties due to the pleiotropic effect they show on the aforementioned processes. These indications highlight the potential role of adequate dietary recommendations for clinical management of both Alzheimer’s diagnosed patients and those in risk of developing it, emphasising once again the importance of diet on health.



Sign in / Sign up

Export Citation Format

Share Document