ChemInform Abstract: Structures and Absolute Configurations of the Marine Toxins, Latrunculin A and Laulimalide.

ChemInform ◽  
2010 ◽  
Vol 27 (20) ◽  
pp. no-no
Author(s):  
C. W. JEFFORD ◽  
G. BERNARDINELLI ◽  
J. TANAKA ◽  
T. HIGA
Keyword(s):  
1996 ◽  
Vol 37 (2) ◽  
pp. 159-162 ◽  
Author(s):  
Charles W. Jefford ◽  
Gérald Bernardinelli ◽  
Jun-ichi Tanaka ◽  
Tatsuo Higa
Keyword(s):  

Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1817-1828 ◽  
Author(s):  
Wei Geng ◽  
Biao He ◽  
Mina Wang ◽  
Paul N Adler

Abstract During their differentiation epidermal cells of Drosophila form a rich variety of polarized structures. These include the epidermal hairs that decorate much of the adult cuticular surface, the shafts of the bristle sense organs, the lateral extensions of the arista, and the larval denticles. These cuticular structures are produced by cytoskeletal-mediated outgrowths of epidermal cells. Mutations in the tricornered gene result in the splitting or branching of all of these structures. Thus, tricornered function appears to be important for maintaining the integrity of the outgrowths. tricornered mutations however do not have major effects on the growth or shape of these cellular extensions. Inhibiting actin polymerization in differentiating cells by cytochalasin D or latrunculin A treatment also induces the splitting of hairs and bristles, suggesting that the actin cytoskeleton might be a target of tricornered. However, the drugs also result in short, fat, and occasionally malformed hairs and bristles. The data suggest that the function of the actin cytoskeleton is important for maintaining the integrity of cellular extensions as well as their growth and shape. Thus, if tricornered causes the splitting of cellular extensions by interacting with the actin cytoskeleton it likely does so in a subtle way. Consistent with this possibility we found that a weak tricornered mutant is hypersensitive to cytochalasin D. We have cloned the tricornered gene and found that it encodes the Drosophila NDR kinase. This is a conserved ser/thr protein kinase found in Caenorhabditis elegans and humans that is related to a number of kinases that have been found to be important in controlling cell structure and proliferation.


2015 ◽  
Vol 7 (18) ◽  
pp. 7715-7723 ◽  
Author(s):  
Hongbo Li ◽  
Quchao Zou ◽  
Ling Zou ◽  
Qin Wang ◽  
Kaiqi Su ◽  
...  

The system structure of the CIB detection instrument: cell-based impedance biosensor units, hardware module, and data processing module.


1984 ◽  
Vol 36 ◽  
pp. 29
Author(s):  
Yasushi Ohizumi ◽  
Masami Takahashi ◽  
Masahiro Tatsumi ◽  
Akiko Kajiwara ◽  
Shoji Shibata ◽  
...  
Keyword(s):  

2009 ◽  
Vol 296 (4) ◽  
pp. C857-C867 ◽  
Author(s):  
Silvia M. Uriarte ◽  
Neelakshi R. Jog ◽  
Gregory C. Luerman ◽  
Samrath Bhimani ◽  
Richard A. Ward ◽  
...  

We have recently reported that disruption of the actin cytoskeleton enhanced N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated granule exocytosis in human neutrophils but decreased plasma membrane expression of complement receptor 1 (CR1), a marker of secretory vesicles. The present study was initiated to determine if reduced CR1 expression was due to fMLP-stimulated endocytosis, to determine the mechanism of this endocytosis, and to examine its impact on neutrophil functional responses. Stimulation of neutrophils with fMLP or ionomycin in the presence of latrunculin A resulted in the uptake of Alexa fluor 488-labeled albumin and transferrin and reduced plasma membrane expression of CR1. These effects were prevented by preincubation of the cells with sucrose, chlorpromazine, or monodansylcadaverine (MDC), inhibitors of clathrin-mediated endocytosis. Sucrose, chlorpromazine, and MDC also significantly inhibited fMLP- and ionomycin-stimulated specific and azurophil granule exocytosis. Disruption of microtubules with nocodazole inhibited endocytosis and azurophil granule exocytosis stimulated by fMLP in the presence of latrunculin A. Pharmacological inhibition of phosphatidylinositol 3-kinase, ERK1/2, and PKC significantly reduced fMLP-stimulated transferrin uptake in the presence of latrunculin A. Blockade of clathrin-mediated endocytosis had no significant effect on fMLP-stimulated phosphorylation of ERK1/2 in neutrophils pretreated with latrunculin A. From these data, we conclude that the actin cytoskeleton functions to limit microtubule-dependent, clathrin-mediated endocytosis in stimulated human neutrophils. The limitation of clathrin-mediated endocytosis by actin regulates the extent of both specific and azurophilic granule exocytosis.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120033 ◽  
Author(s):  
Anna Mallol ◽  
Josep Santaló ◽  
Elena Ibáñez

Talanta ◽  
2013 ◽  
Vol 116 ◽  
pp. 770-775 ◽  
Author(s):  
Qing Shen ◽  
Like Gong ◽  
Joewel T. Baibado ◽  
Wei Dong ◽  
Yixuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document