Hydrodynamic Characteristics of the Flow of Thin Cylindrical Liquid Films on Vertical Solid Support. Heat and Mass Transfer Phenomena Between the Liquid Film and a Gas Phase

1979 ◽  
Vol 51 (4) ◽  
pp. 330-331 ◽  
Author(s):  
S. Lefebvre ◽  
J. Vanderschuren ◽  
D. Verheve ◽  
F. Onyejekwe
Author(s):  
Monssif Najim ◽  
M'barek Feddaoui ◽  
Abderrahman Nait Alla ◽  
Adil Charef

This chapter presents a numerical investigation of heat and mass transfer characteristics during the evaporation of liquid films in vertical geometries. A two-phase model is developed to simulate laminar film evaporation into laminar gas flow. The liquid film evaporation is evaluated under adiabatic and heated wall conditions for both pure and binary liquid film. The model is based on a finite difference method to solve the governing equations of the two phases. The obtained results concerns two industrial processes. The first part of the chapter is devoted to the analysis of the thermal protection of vertical channel wall, while the second part is devoted to the desalination process by falling liquid film. The simulations results allowed the determination of the optimal operating conditions for both processes.


2015 ◽  
Vol 19 (5) ◽  
pp. 1805-1819 ◽  
Author(s):  
M’hand Oubella ◽  
M’barek Feddaoui ◽  
Rachid Mir

A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.


1982 ◽  
Vol 47 (3) ◽  
pp. 766-775 ◽  
Author(s):  
Václav Kolář ◽  
Jan Červenka

The paper presents results obtained by processing a series of published experimental data on heat and mass transfer during evaporation of pure liquids from the free board of a liquid film into the turbulent gas phone. The data has been processed on the basis of the earlier theory of mechanism of heat and mass transfer. In spite of the fact that this process exhibits a strong Stefan's flow, the results indicate that with a proper definition of the driving forces the agreement between theory and experiment is very good.


1987 ◽  
Vol 109 (2) ◽  
pp. 89-93 ◽  
Author(s):  
P. Gandhidasan ◽  
M. Rifat Ullah ◽  
C. F. Kettleborough

Heat and mass transfer analysis between a desiccant-air contact system in a packed tower has been studied in application to air dehumidification employing liquid desiccant, namely calcium chloride. Ceramic 2 in. Raschig rings are used as the packing material. To predict the tower performance, a steady-state model which considers the heat and mass transfer resistances of the gas phase and the mass transfer resistance of the liquid phase is developed. The governing equations are solved on a digital computer to simulate the performance of the tower. The various parameters such as the effect of liquid concentration and temperature, air temperature and humidity and the rates of flow of air and liquid affecting the tower performance have been discussed.


2018 ◽  
Vol 194 ◽  
pp. 01007
Author(s):  
Maria V. Bartashevich

Mathematical model of conjugated heat and mass transfer in absorption on the entrance region of the semi-infinite liquid film of lithium bromide water solution is investigated for different values of Froude number. The calculations shown that larger values of Froude number corresponds to a smaller thickness of the falling film. It was demonstrated that for large values of the Froude number the heat transfer from the surface is greater than for smaller values.


Sign in / Sign up

Export Citation Format

Share Document