scholarly journals Function of dynein in budding yeast: Mitotic spindle positioning in a polarized cell

2009 ◽  
Vol 66 (8) ◽  
pp. 546-555 ◽  
Author(s):  
Jeffrey K. Moore ◽  
Melissa D. Stuchell-Brereton ◽  
John A. Cooper
2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Jeffrey K. Moore ◽  
Linnea Wethekam

α- and β-tubulins are encoded by multigene families, but the role of tubulin diversity for microtubule function has been a longstanding mystery. A new study (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202010155) shows that the two budding yeast α-tubulins have distinct roles during mitotic spindle positioning.


2019 ◽  
Author(s):  
Saptarshi Chatterjee ◽  
Subhendu Som ◽  
Neha Varshney ◽  
Kaustuv Sanyal ◽  
Raja Paul

AbstractMitotic spindle formation in the pathogenic budding yeast, Cryptococcus neoformans, depends on multitudes of inter-dependent interactions involving kinetochores (KTs), microtubules (MTs), spindle pole bodies (SPBs), and molecular motors. Before the formation of the mitotic spindle, multiple visible microtubule organizing centers (MTOCs), coalesce into a single focus to serve as an SPB. We propose a ‘grow-and-catch’ model, in which cytoplasmic MTs (cMTs) nucleated by MTOCs grow and catch each other to promote MTOC clustering. Our quantitative modeling identifies multiple redundant mechanisms mediated by a combination of cMT-cell cortex interactions and inter-cMT coupling to facilitate MTOC clustering within the physiological time limit as determined by time-lapse live-cell microscopy. Besides, we screened various possible mechanisms by computational modeling and propose optimal conditions that favor proper spindle positioning - a critical determinant for timely chromosome segregation. These analyses also reveal that a combined effect of MT buckling, dynein pull, and cortical push maintain spatiotemporal spindle localization.Author summaryCells actively self-assemble a bipolar spindle to facilitate chromosomal segregation. Multiple MTOCs, on the outer nuclear envelope, cluster into a single SPB before spindle formation during semi-open mitosis of the budding yeast Cryptococcus neoformans. Eventually, the SPB duplicates and organizes the spindle to position it within the daughter bud near the septin ring during anaphase. In this work, we tested various computational models to match physiological phenomena in an attempt to find plausible mechanisms of MTOC clustering and spindle positioning in C. neoformans. Notably, we propose an MT ‘grow-and-catch’ model that relies on possible redundant mechanisms for timely MTOC clustering mediated by (a) minus end-directed motors that crosslink and slide anti-parallel cMTs from different MTOCs on the nuclear envelope and (b) a Bim1 mediated biased sliding of cMTs along the cell cortex toward the septin ring that pulls MTOCs in the presence of suppressed dynein activity. By combining an analytical model and stochastic MT dynamics simulations, we screened various MT-based forces to detect steady spindle positioning. By screening the outputs of various models, it is revealed that proper spindle positioning near the septin ring requires MT buckling from the cell cortex.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 453-470
Author(s):  
Sue Biggins ◽  
Needhi Bhalla ◽  
Amy Chang ◽  
Dana L Smith ◽  
Andrew W Murray

Abstract Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair α-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lindsey Seldin ◽  
Andrew Muroyama ◽  
Terry Lechler

Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures.


2017 ◽  
Vol 216 (10) ◽  
pp. 3061-3071 ◽  
Author(s):  
Lauren M. Kraft ◽  
Laura L. Lackner

Interorganelle contacts facilitate communication between organelles and impact fundamental cellular functions. In this study, we examine the assembly of the MECA (mitochondria–endoplasmic reticulum [ER]–cortex anchor), which tethers mitochondria to the ER and plasma membrane. We find that the assembly of Num1, the core component of MECA, requires mitochondria. Once assembled, Num1 clusters persistently anchor mitochondria to the cell cortex. Num1 clusters also function to anchor dynein to the plasma membrane, where dynein captures and walks along astral microtubules to help orient the mitotic spindle. We find that dynein is anchored by Num1 clusters that have been assembled by mitochondria. When mitochondrial inheritance is inhibited, Num1 clusters are not assembled in the bud, and defects in dynein-mediated spindle positioning are observed. The mitochondria-dependent assembly of a dual-function cortical anchor provides a mechanism to integrate the positioning and inheritance of the two essential organelles and expands the function of organelle contact sites.


2013 ◽  
Vol 26 (5) ◽  
pp. 483-495 ◽  
Author(s):  
Davide Panigada ◽  
Paolo Grianti ◽  
Alessandro Nespoli ◽  
Giuseppe Rotondo ◽  
Daniela Gallo Castro ◽  
...  

2015 ◽  
Vol 26 (7) ◽  
pp. 1286-1295 ◽  
Author(s):  
Francisco Lázaro-Diéguez ◽  
Iaroslav Ispolatov ◽  
Anne Müsch

All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.


1999 ◽  
Vol 145 (5) ◽  
pp. 979-991 ◽  
Author(s):  
Roberta Fraschini ◽  
Elisa Formenti ◽  
Giovanna Lucchini ◽  
Simonetta Piatti

The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document