Order‐Unity 13C Nuclear Polarization of [1‐13C]Pyruvate in Seconds and the Interplay of Water and SABRE Enhancement

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Isaiah Adelabu ◽  
Patrick TomHon ◽  
Mohammad Shah Hafez Kabir ◽  
Shiraz Nantogma ◽  
Mustapha Abdulmojeed ◽  
...  
Author(s):  
M. M. Glazov

The transfer of nonequilibrium spin polarization between the electron and nuclear subsystems is studied in detail. Usually, a thermal orientation of nuclei in magnetic field is negligible due to their small magnetic moments, but if electron spins are optically oriented, efficient nuclear spin polarization can occur. The microscopic approach to the dynamical nuclear polarization effect based on the kinetic equation method, along with a phenomenological but very powerful description of dynamical nuclear polarization in terms of the nuclear spin temperature concept is given. In this way, one can account for the interaction between neighbouring nuclei without solving a complex many-body problem. The hyperfine interaction also induces the feedback of polarized nuclei on the electron spin system giving rise to a number of nonlinear effects: bistability of nuclear spin polarization and anomalous Hanle effect, dragging and locking of optical resonances in quantum dots. Theory is illustrated by experimental data on dynamical nuclear polarization.


Author(s):  
Tomoyuki Hamachi ◽  
Koki Nishimura ◽  
Hironori Kouno ◽  
Yusuke Kawashima ◽  
Kenichiro Tateishi ◽  
...  

Author(s):  
Marcos de Oliveira Jr. ◽  
Kevin Herr ◽  
Martin Brodrecht ◽  
Nadia Berenice Haro-Mares ◽  
Till Wissel ◽  
...  

High-field Dynamic Nuclear Polarization is a powerful tool for the structural characterization of species on the surface of porous materials or nanoparticles. For these studies the main source of polarization...


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Éanna É. Flanagan

Abstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where Mi is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2 . (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l, there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ MiM−3/2.


2021 ◽  
Vol 154 (3) ◽  
pp. 035102
Author(s):  
Siu Ying Wong ◽  
Ilia A. Solov’yov ◽  
P. J. Hore ◽  
Daniel R. Kattnig

Author(s):  
Min Lin ◽  
Vincent Breukels ◽  
Tom W. J. Scheenen ◽  
Jos M. J. Paulusse

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 821
Author(s):  
Sergey Khrapak ◽  
Alexey Khrapak

The Prandtl number is evaluated for the three-dimensional hard-sphere and one-component plasma fluids, from the dilute weakly coupled regime up to a dense strongly coupled regime near the fluid-solid phase transition. In both cases, numerical values of order unity are obtained. The Prandtl number increases on approaching the freezing point, where it reaches a quasi-universal value for simple dielectric fluids of about ≃1.7. Relations to two-dimensional fluids are briefly discussed.


2019 ◽  
Vol 100 ◽  
pp. 70-76 ◽  
Author(s):  
Evgeniy Sergeevich Salnikov ◽  
Fabien Aussenac ◽  
Sebastian Abel ◽  
Armin Purea ◽  
Paul Tordo ◽  
...  

2013 ◽  
Vol 22 (12) ◽  
pp. 1342014 ◽  
Author(s):  
XAVIER CALMET

In this paper, we discuss an effective theory for quantum gravity and discuss the bounds on the parameters of this effective action. In particular, we show that measurement in pulsars binary systems are unlikely to improve the bounds on the coefficients of the R2 and RμνRμν terms obtained from probes of Newton's potential performed on Earth. Furthermore, we argue that if the coefficients of these terms are induced by quantum gravity, they should be at most of order unity since R2 and RμνRμν are dimension four operators. The same applies to the nonminimal coupling of the Higgs boson to the Ricci scalar.


Sign in / Sign up

Export Citation Format

Share Document