Quantum-theoretical calculation of activation parameters for mass transfer and mass transport processes on ionic crystals (V)

1980 ◽  
Vol 15 (4) ◽  
pp. 445-453 ◽  
Author(s):  
A. Winzer
Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 358 ◽  
Author(s):  
Endre Nagy ◽  
Márta Vitai

This paper investigated the steady-state mass transport process through anisotropic, composite membrane layers with variable mass transport coefficients, such as the diffusion coefficient, convective velocity, or chemical/biochemical reaction rate constant. The transfer processes can be a solution-diffusion model or diffusive plus convective process. In the theoretical part, the concentration distribution as well as the inlet and outlet mass transfer rates’ expressions are defined for physical transport processes with variable diffusion or solubility coefficients and then that for transport processes accompanied by first- and zero-order reactions, in the presence of diffusive and convective flow, with constant and variable parameters. The variation of the transport parameters as a function of the local coordinate was defined by linear equations. It was shown that the increasing diffusion coefficient or convective flow induces much lower concentrations across the membrane layer than transport processes, with their decreasing values a function of the space coordinate. Accordingly, this can strongly affect the effect of the concentration dependent chemical/biochemical reaction. The inlet mass transfer rate can also be mostly higher when the transport parameter decreases across the anisotropic membrane layer.


Author(s):  
Daniel E. Dedrick ◽  
Michael P. Kanouff ◽  
Richard S. Larson ◽  
Terry A. Johnson ◽  
Scott W. Jorgensen

Hydrogen storage technologies based on solid-phase materials involve highly coupled transport processes including heat transfer, mass transfer, and chemical kinetics. A full understanding of these processes and their relative impact on system performance is required to enable the design and optimization of efficient systems. This paper examines the coupled transport processes of titanium doped sodium alanates (NaAlH4, Na3AlH6) enhanced with excess aluminum and expanded natural graphite. Through validated modeling and simulation, we have illuminated transport bottlenecks that arise due to mass transfer limitations in scaled-up systems. Individual heat transport, mass transport, and chemical kinetic processes were isolated and experimentally characterized to generate a robust set of model parameters for all relevant operational states. The individual transport models were then coupled to simulate absorption processes associated with rapid refueling of scaled-up systems. Using experimental data for the absorption performance of a 1.6 kg sodium alanate system, comparisons were made to computed results to identify dominant transport mechanisms. The results indicated that channeling around the compacted porous solid can contribute significantly to the overall transport of hydrogen into and out of the system. The application of these transport models is generally applicable to a variety of condensed-phase hydrogen sorption materials and facilitates the design of optimally performing systems.


1988 ◽  
Vol 127 ◽  
Author(s):  
P. J. Bourke ◽  
D. Gilling ◽  
N. L. Jefferies ◽  
D. A. Lever ◽  
T. R. Lineham

ABSTRACTAqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data have been compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models.


2000 ◽  
Vol 123 (3) ◽  
pp. 494-500 ◽  
Author(s):  
M. Groper ◽  
I. Etsion

Two possible, long standing speculated mechanisms are theoretically investigated in an attempt to understand previous experimental observations of pressure build up in the cavitation zone of a submerged journal bearing. These mechanisms are (1) the shear of the cavity gas bubble by a thin lubricant film dragged through the cavitation zone by the rotating shaft and (2) the mass transfer mechanism which dictates the rate of diffusion of dissolved gas out of and back into the lubricant. A comparison with available experimental results reveals that while the cavitation shape is fairly well predicted by the “shear” mechanism, this mechanism is incapable of generating the level of the experimentally measured pressures, particularly towards the end of the cavitation zone. The “mass transport” mechanism is found inadequate to explain the experimental observations. The effect of this mechanism on the pressure build up in the cavitation zone can be completely ignored.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Amit Halder ◽  
Ashish Dhall ◽  
Ashim K. Datta

Fundamental, physics-based modeling of complex food processes is still in the developmental stages. This lack of development can be attributed to complexities in both the material and transport processes. Society has a critical need for automating food processes (both in industry and at home) while improving quality and making food safe. Product, process, and equipment designs in food manufacturing require a more detailed understanding of food processes that is possible only through physics-based modeling. The objectives of this paper are (1) to develop a general multicomponent and multiphase modeling framework that can be used for different thermal food processes and can be implemented in commercially available software (for wider use) and (2) to apply the model to the simulation of deep-fat frying and hamburger cooking processes and validate the results. Treating food material as a porous medium, heat and mass transfer inside such material during its thermal processing is described using equations for mass and energy conservation that include binary diffusion, capillary and convective modes of transport, and physicochemical changes in the solid matrix that include phase changes such as melting of fat and water and evaporation/condensation of water. Evaporation/condensation is considered to be distributed throughout the domain and is described by a novel nonequilibrium formulation whose parameters have been discussed in detail. Two complex food processes, deep-fat frying and contact heating of a hamburger patty, representing a large group of common food thermal processes with similar physics have been implemented using the modeling framework. The predictions are validated with experimental results from the literature. As the food (a porous hygroscopic material) is heated from the surface, a zone of evaporation moves from the surface to the interior. Mass transfer due to the pressure gradient (from evaporation) is significant. As temperature rises, the properties of the solid matrix change and the phases of frozen water and fat become transportable, thus affecting the transport processes significantly. Because the modeling framework is general and formulated in a manner that makes it implementable in commercial software, it can be very useful in computer-aided food manufacturing. Beyond its immediate applicability in food processing, such a comprehensive model can be useful in medicine (for thermal therapies such as laser surgery), soil remediation, nuclear waste treatment, and other fields where heat and mass transfer takes place in porous media with significant evaporation and other phase changes.


Sign in / Sign up

Export Citation Format

Share Document