scholarly journals Evaluation of humic fertilizers on a sand‐based creeping bentgrass putting green

Crop Science ◽  
2021 ◽  
Author(s):  
Alex J Lindsey ◽  
Adam W. Thoms ◽  
Marshall D. McDaniel ◽  
Nick E. Christians
1980 ◽  
Vol 60 (4) ◽  
pp. 1209-1213 ◽  
Author(s):  
J.L. EGGENS

The effectiveness of thatch control practices commonly employed in Ontario on Penncross creeping bentgrass turf maintained as a putting green was evaluated from July 1976 to October 1979. The most effective treatments were coring and vertical mowing followed by topdressing, and topdressing alone. The least amount of winter injury occurred in plots where coring was followed by topdressing. Coring reduced thatch accumulation more than did vertical mowing. Vertical mowing increased winter injury and annual bluegrass content in the plots more than did coring. Thatch accumulation was less at the 5-mm than at the 8-mm mowing height. Nitrogen treatments of 2 and 4 kg N∙100 m−2 did not influence thatch accumulation.


Plant Disease ◽  
1999 ◽  
Vol 83 (6) ◽  
pp. 516-520 ◽  
Author(s):  
Yan Feng ◽  
Peter H. Dernoeden

Putting green samples (n = 109) were inspected for the presence of Pythium oospores in roots of plants from golf courses (n = 39) in Maryland and adjacent states. Twenty-eight Pythium isolates were recovered from creeping bentgrass (Agrostis palustris) (n = 25) and annual bluegrass (Poa annua) (n = 3) plants. Most isolates associated with Pythium-induced root dysfunction were from greens less than 3 years of age and were obtained primarily between March and June, 1995 to 1997. Eight Pythium species (P. aristosporum, P. aphanidermatum, P. catenulatum, P. graminicola, P. torulosum, P. vanterpoolii, P. volutum, and P. ultimum var. ultimum) were isolated from creeping bentgrass and two species (P. graminicola and P. torulosum) were from annual bluegrass. All species, except P. catenulatum, were pathogenic to ‘Crenshaw’ creeping bentgrass seedlings in postemergence pathogenicity tests. P. aristosporum (n = 3) and P. aphanidermatum (n = 1) were highly aggressive at a low (18°C) and a high temperature (28°C). P. graminicola (n = 1) was low to moderately aggressive. P. torulosum (n = 12) was the most frequently isolated species, but most isolates were either nonpathogenic or caused very little disease. P. aristosporum (n = 3) and P. aphanidermatum (n = 1) were highly aggressive and were associated with rapid growth at 18 and 28°C on cornmeal agar. P. volutum (n = 1) was highly aggressive at 18°C, but was one of slowest growing isolates. Infected roots were generally symptomless, and the number of oospores observed in roots was not always a good indicator of disease or of the aggressiveness of an isolate. Large numbers of oospores of low or even nonpathogenic species may cause dysfunction of creeping bentgrass roots.


2009 ◽  
Vol 23 (3) ◽  
pp. 425-430 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Bispyribac-sodium is an efficacious herbicide for annual bluegrass control in creeping bentgrass fairways, but turf tolerance and growth inhibition may be exacerbated by low mowing heights on putting greens. We conducted field and greenhouse experiments to investigate creeping bentgrass putting green tolerance to bispyribac-sodium. In greenhouse experiments, creeping bentgrass discoloration from bispyribac-sodium was exacerbated by reductions in mowing height from 24 to 3 mm, but mowing height did not influence clipping yields or root weight. In field experiments, discoloration of creeping bentgrass putting greens was greatest from applications of 37 g/ha every 10 d, compared to 74, 111, or 222 g/ha applied less frequently. Chelated iron effectively reduced discoloration of creeping bentgrass putting greens from bispyribac-sodium while trinexapac-ethyl inconsistently reduced these effects. Overall, creeping bentgrass putting greens appear more sensitive to bispyribac-sodium than higher mowed turf, but chelated iron and trinexapac-ethyl could reduce discoloration.


1991 ◽  
Vol 71 (2) ◽  
pp. 595-599 ◽  
Author(s):  
D. J. Cattani ◽  
M. H. Entz ◽  
K. C. Bamford

Tiller production and dry matter accumulation were monitored in six creeping bentgrass (Agrostis palustris Hud.) genotypes maintained as a putting green. Core samples for tiller density and aboveground biomass determinations were collected at intervals between October 1987 and October 1989. Two experimental lines, UM84-01 and UM86-01, produced more (P < 0.05) tillers and higher (P < 0.05) aboveground biomass than the commercial cultivars Penneagle, National, Emerald and Seaside. Both tiller density and aboveground biomass rankings among genotypes were consistent over the study period. Although lower tillering genotypes had a significantly higher aboveground biomass per tiller, total aboveground biomass was influenced more by tiller density than by biomass per tiller. The relationship between tiller density and tiller dry weight was expressed mathematically to determine potential wear stress resistance among genotypes. Key words: Creeping bentgrass, tillering, biomass accumulation


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 44-50 ◽  
Author(s):  
D. M. Settle ◽  
J. D. Fry ◽  
T. C. Todd ◽  
N. A. Tisserat

The effects of management practices and nematode population density on the seasonal fluctuationsin lance nematode (Hoplolaimus galeatus) populations in creeping bentgrass were studiedin a naturally infested experimental putting green and in artificially infested microplots. In general, H. galeatus populations increased from late spring through midsummer, declined in August, and increased again in the fall. Population increase in microplots was strongly density dependent, with final population densities inversely proportional to inoculum levels. Ectoparasitic populationsof H. galeatus in both studies were composed of adults and juveniles, whereas endoparasiticpopulations were almost exclusively juveniles. H. galeatus populations in the naturallyinfested site were aggregated spatially, but the aggregation was not temporally stable. Nematodepopulations were not affected by bentgrass cultivar selection or irrigation frequency.


HortScience ◽  
1994 ◽  
Vol 29 (8) ◽  
pp. 880-883 ◽  
Author(s):  
B. Jack Johnson

Three field experiments were conducted to determine if several preemergence and postemergence herbicides were safe to apply to creeping bentgrass (Agrostis stolonifera L. `Penncross') maintained at putting green height. When dithiopyr was applied at preemergence in late February or early March, the emulsifiable concentrate formulation (≤1.7 kg·ha-1) and granular formulation (≤1.1 kg·ha-1) did not reduce the quality or cover of creeping bentgrass. Applied at preemergence, bensulide plus oxadiazon at 6.7 + 1.7 kg·ha-1 and 13.4 + 3.4 kg·ha-1 reduced turfgrass quality for 2 to 3 weeks and 8 weeks after treatment, respectively. When MON 12051 and monosodium salt of methylarsonic acid (MSMA) (≤0.14 and ≤2.2 kg·ha-1, respectively) were applied at postemergence to creeping bentgrass in early June, the reduction in turfgrass quality varied from slight to moderate for 1 to 2 weeks, but turfgrass fully recovered with no effect on turfgrass cover. Quinclorac applied at postemergence in early June at ≥0.6 kg·ha-1 severely reduced creeping bentgrass quality and cover for ≥8 weeks. Diclofop at 0.6 kg·ha-1 applied to creeping bentgrass in June, July, or August maintained consistently higher quality and cover ratings than when applied at ≥1.1 kg·ha-1. Diclofop applied at 0.6 kg·ha-1 in June and repeated at the same rate in July reduced quality of creeping bentgrass less than when applied at 1.1 kg·ha-1 at any date. Chemical names used: O,O-bis (1-methylethyl) S-{2-[(phenylsulfonyl)amino]ethyl} phosphorodithioate (bensulide); (±)-2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid (diclofop); S,S-dimethyl-2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate (dithiopyr); methyl-5-{[(4,6-dimethoxy-2-pyrimidinyl)amino] carbonylaminosulfonyl}-3-chloro-1-methyl-1-H-pyrazol-4-carboxylate (MON 12051); 3-[2,4-dicloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon); 3,7-dicloro-8-quinolinecarboxylic acid (quinclorac).


HortScience ◽  
2001 ◽  
Vol 36 (6) ◽  
pp. 1123-1126 ◽  
Author(s):  
Charles F. Mancino ◽  
Dianne Petrunak ◽  
Douglas Wilkinson

The loss of fertilizer granules collected in turf clippings during routine putting green mowing has not been determined. The objective of this study was to quantify the amounts of greens-grade granular potassium (K) and nitrogen (N) fertilizers collected during the routine mowing of a `Pennlinks' creeping bentgrass (Agrostis palustris Huds.) putting green. In the first study, five K-containing granular fertilizers were applied at K rates of 2.43 and 4.86 g·m-2. A second study was also performed with six granular Ncontaining fertilizers and one liquid N fertilizer applied at an N rate of 4.86 g·m-2. Both studies were performed twice. Irrigation (6.4 mm) was applied immediately after each fertilizer application and again on the following day. These two irrigations, plus additional irrigation and rain, resulted in each study receiving about 2.54 cm of water over each nineday study period. Mowing and clipping collection using a walk-behind greens mower set to cut at 3.96 mm began two days after treatment (2 DAT) and continued until 9 DAT. The clippings were oven-dried and separated from the fertilizer using a small pneumatic seed cleaner. Collected fertilizer was weighed and expressed as a percentage of the fertilizer applied. Liquid N fertilizer loss was estimated to be the difference between clipping N content of treated plots and untreated controls. Total K fertilizer loss was: UHS Signature 15-0-30 (15.3% to 22.9%) > Lebanon Isotek 11-3-22 (8.7% to 10.7%) > Scott's Contec 13-2-26 (4.9% to 7.4%) > Lesco Matrix 12-0-22 (0.1% to 0.4%) = Lesco Matrix 5-0-28 (0.1% to 0.5%). Signature was the only fertilizer significantly affected by rate and a greater percentage of loss occurred at the lower K application rate. Most loss occurred during the first and second mowing events with small amounts of fertilizer found in clippings from later mowings. The two Lesco materials were not found in clippings after the first mowing. Nitrogen fertilizer granule loss was also greatest with the first and second mowings. Total percentage of losses were IBDU 31-0-0 (75.4%) > Polyon 41-0-0 (70.8%)> Milorganite 6-2-0 (55.7%) > Nutralene 40-0-0 (47.0%) > UHS Signature (19.3%) > Isotek 11-3-22 (9.5%) > N-Sure Pro 30-0-0 (1.9%). In both studies, fertilizer loss appeared to be most related to water-solubility of the fertilizer, but size and density might also be factors.


2005 ◽  
Vol 15 (1) ◽  
pp. 169-172 ◽  
Author(s):  
M.A. Fidanza ◽  
P.F. Colbaugh ◽  
M.C. Engelke ◽  
S.D. Davis ◽  
K.E. Kenworthy

Fairy ring is a common and troublesome disease of turfgrasses maintained on golf course putting greens. Type-I fairy ring is especially destructive due to the development of hydrophobic conditions in the thatch and root zone, thus contributing to turfgrass injury and loss. The objective of this 2-year field study was to evaluate the application and novel delivery method of two fungicides and a soil surfactant for curative control of type-I fairy ring in a 20-year-old creeping bentgrass [Agrostis palustris (synonym A. stolonifera)] putting green. In both years, all treatments were applied twice on a 28-day interval. In 1998, flutolanil and azoxystrobin fungicides were applied alone and in combination with Primer soil surfactant by a conventional topical spray method, and fungicides without Primer applied via high-pressure injection (HPI). Acceptable type-I fairy ring control was observed in plots treated with flutolanil plus Primer, HPI flutolanil, azoxystrobin alone, azoxystrobin plus Primer, or HPI azoxystrobin. In 1999, treatments were HPI flutolanil, HPI flutolanil plus Primer, HPI azoxystrobin, HPI water only, and aeration only. Acceptable type-I fairy ring control was observed in plots treated with HPI flutolanil plus Primer or HPI azoxystrobin. HPI of fungicides alone or in combination with a soil surfactant may be a viable option for alleviating type-I fairy ring symptoms on golf course putting greens.


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 654-659 ◽  
Author(s):  
Megan M. Kennelly ◽  
Timothy C. Todd ◽  
Derek M. Settle ◽  
Jack D. Fry

Moss is common on creeping bentgrass (Agrostis stolonifera L.) putting greens, and more control options are needed. Spot treatment of sodium bicarbonate (44.2 g·L−1) was compared with broadcast sprays of carfentrazone-ethyl (50.5 or 101 g a.i./ha), chlorothalonil (8.2 or 12.8 kg a.i./ha) and a tank mixture of chlorothalonil, mancozeb, and thiram (8.2, 9.8, and 11.5 kg a.i./ha) in 2006 in Lemont, IL. Sodium bicarbonate suppressed moss growth equally as the conventional products. These results led to further experiments in 2008 in which moss suppression was evaluated within standard and alternative putting green management regimes in Manhattan, KS, and Lemont, IL. The standard approach included spring and fall applications of carfentrazone-ethyl (101 g a.i./ha) for moss control, biweekly applications of urea (46N–0P–0K) at 15 kg N/ha, and applications of chlorothalonil (8.2 kg a.i./ha) on a 14-day interval. Conversely, the alternative approach included spring and fall spot treatments of sodium bicarbonate (44.2 g·L−1) for moss control, biweekly applications of a natural organic fertilizer (8N–1P–3K) to provide nitrogen at 15 kg N/ha, and applications of chlorothalonil (8.2 kg a.i./ha) only when dollar spot reached a predetermined threshold level. Standard and alternative regimes were compared at both 3.2- and 4.0-mm mowing heights; synthetic and organic fertilizers applied alone without pest control approaches were included as controls. In Kansas and Illinois, moss coverage using the alternative management regime was not significantly different from that on greens managed using the standard regime. In Kansas, moss severity at a 3.2 mm was 1.6-fold higher than at the 4.0-mm height. In Illinois, sodium bicarbonate suppressed moss equivalently to the carfentrazone-ethyl treatment, and in the fertilizer-only controls, mowing at 3.2 versus 4.0 mm led to more moss coverage. These studies demonstrate that moss can be effectively suppressed on greens using spot applications of sodium bicarbonate and reduced moss encroachment is possible with higher mowing heights.


Sign in / Sign up

Export Citation Format

Share Document