Tiller production and dry matter accumulation in six creeping bentgrass genotypes grown in Manitoba

1991 ◽  
Vol 71 (2) ◽  
pp. 595-599 ◽  
Author(s):  
D. J. Cattani ◽  
M. H. Entz ◽  
K. C. Bamford

Tiller production and dry matter accumulation were monitored in six creeping bentgrass (Agrostis palustris Hud.) genotypes maintained as a putting green. Core samples for tiller density and aboveground biomass determinations were collected at intervals between October 1987 and October 1989. Two experimental lines, UM84-01 and UM86-01, produced more (P < 0.05) tillers and higher (P < 0.05) aboveground biomass than the commercial cultivars Penneagle, National, Emerald and Seaside. Both tiller density and aboveground biomass rankings among genotypes were consistent over the study period. Although lower tillering genotypes had a significantly higher aboveground biomass per tiller, total aboveground biomass was influenced more by tiller density than by biomass per tiller. The relationship between tiller density and tiller dry weight was expressed mathematically to determine potential wear stress resistance among genotypes. Key words: Creeping bentgrass, tillering, biomass accumulation

Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 517-520 ◽  
Author(s):  
Ryan D. Lins ◽  
Jed B. Colquhoun ◽  
Carol A. Mallory-Smith

Small broomrape is a parasite of several broadleaf plant species. Consequences of small broomrape infestation in host cropping systems include seed contamination, reduction in crop seed yield, and host plant death. The effect of small broomrape parasitism on the biomass partitioning of its primary host, red clover, has not been documented. Greenhouse experiments were conducted to determine the relationship between small broomrape and red clover biomass accumulation. Total biomass of parasitized red clover plants was 15 to 51% less than nonparasitized red clover plants. Small broomrape parasitism reduced the amount of dry matter allocated to red clover inflorescences by 50 to 80%. Small broomrape dry matter accumulation was strongly related to total red clover–small broomrape dry matter accumulation. Small broomrape attachment number per red clover plant was a poor indicator of relative small broomrape dry weight accumulation. The results of this study indicated that small broomrape accumulated resources from red clover at the greatest expense to the economically important reproductive tissues.


Author(s):  
Muhammad Zeeshan Mehmood ◽  
Ghulam Qadir ◽  
Obaid Afzal ◽  
Atta Mohi Ud Din ◽  
Muhammad Ali Raza ◽  
...  

AbstractSeveral biotic and abiotic stresses significantly decrease the biomass accumulation and seed yield of sesame crops under rainfed areas. However, plant growth regulators (such as Paclobutrazol) can improve the total dry matter and seed production of the sesame crop. The effects of the paclobutrazol application on dry matter accumulation and seed yield had not been studied before in sesame under rainfed conditions. Therefore, a two-year field study during 2018 and 2019 was conducted with key objectives to assess the impacts of paclobutrazol on leaf greenness, leaf area, total dry matter production and partitioning, seed shattering, and seed yield of sesame. Two sesame cultivars (TS-5 and TS-3) were treated with four paclobutrazol concentrations (P0 = Control, P1 = 100 mg L−1, P2 = 200 mg L−1, P3 = 300 mg L−1). The experiment was executed in RCBD-factorial design with three replications. Compared with P0, treatment P3 improved the leaf greenness of sesame by 17%, 38%, and 60% at 45, 85, and 125 days after sowing, respectively. However, P3 treatment decreased the leaf area of sesame by 14% and 20% at 45 and 85 days after sowing than P0, respectively. Compared with P0, treatment P3 increased the leaf area by 46% at 125 days after sowing. On average, treatment P3 also improved the total biomass production by 21% and partitioning in roots, stems, leaves, capsules, and seeds by 23%, 19%, 23%, 22%, and 40%, respectively, in the whole growing seasons as compared to P0. Moreover, under P3 treatment, sesame attained the highest seed yield and lowest seed shattering by 27% and 30%, respectively, compared to P0. This study indicated that by applying the paclobutrazol concentration at the rate of 300 mg L−1 in sesame, the leaf greenness, leaf areas, biomass accumulation, partitioning, seed yield, and shatter resistance could be improved. Thus, the optimum paclobutrazol level could enhance the dry matter accumulation and seed production capacity of sesame by decreasing shattering losses under rainfed conditions.


1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate


1991 ◽  
Vol 116 (6) ◽  
pp. 981-986 ◽  
Author(s):  
F.J.A. Niederholzer ◽  
R.M. Carlson ◽  
K. Uriu ◽  
N.H. Willits ◽  
J.P. Pearson

A study was undertaken to determine the seasonal dynamics of leaf and fruit K content and the influence of tree K status and fruit growth on leaf and fruit K accumulation rates in French prune (Prunus domestics L. cv. d'Agen). Mature trees in a commercial orchard were treated with various rates of K2 SO4. (O to ≈20 kg/tree) in the fall. Fruit dry weight yield per tree at harvest and fruit K content were higher for high-K trees, but fruit percent K (by dry weight) was ≈1.0% for all trees. Leaf scorch and subsequent abscission severely reduced the canopy of K-deficient trees. Significant positive linear relationships between leaf and fruit K accumulation rates existed for the periods of 28 Apr.-28 May (May) and 28 May-7 July (June). A significant negative linear relationship existed between these two criteria from 7 July-3 Aug. (July). May (0.237 mg K per fruit-day) and July (0.267 mg K per fruit-day) mean fruit K accumulation rates were similar, but both were significantly higher (P = 0.001) than those for June (0.140 mg K per fruit-day). Mean leaf K accumulation rates for May (- 0.007 mg K per leaf-day) and July (-0.010 mg K per leaf-day) were similar, but both were significantly (P = 0.001) less than for June (0.005 mg K per leaf-day). Potassium per fruit accumulation was highest in trees with highest K status. Periods of net leaf K efflux and influx did not precisely correlate with fruit growth stages measured by fruit dry weight. The period of lowest fruit K accumulation (28 May-7 July) coincided with the period of maximum dry matter accumulation by the kernel. After 7 July, all increases in fruit dry weight and K content were due to mesocarp growth.


1989 ◽  
Vol 25 (3) ◽  
pp. 349-355 ◽  
Author(s):  
S. S. Parihar ◽  
R. S. Tripathi

SUMMARYThe response of chickpea to irrigation and phosphorus was studied at Kharagpur in Eastern India. Irrigation scheduling was based on the ratio between irrigation water applied and cumulative pan evaporation (ID/CPE), and had little effect on dry matter accumulation. Increasing the frequency and amount of irrigation reduced the number and dry weight of nodules per plant, which increased to a maximum 70 days after sowing and then declined. Irrigation significantly reduced grain yield as a result of excessive vegetative growth at the expense of pod formation. Application of phosphorus promoted nodulation and increased both nodule dry weight and the concentration of N, P and K in grain and stover. Uptake of N, P and K by the crop was also increased.


1985 ◽  
Vol 65 (4) ◽  
pp. 867-877 ◽  
Author(s):  
LEONARD SAARI ◽  
SEPPO O. SALMINEN ◽  
ROBERT D. HILL

Developing triticale, wheat and rye grains were studied from 6 to 42 days postanthesis with respect to levels of sucrose and sucrose synthase activity. These were compared with levels of glucose and hexokinase activity as well as changes in dry weight and water content. Dry matter accumulation was linear in all cultivars and ceased at 26–34 days postanthesis, depending on the cultivar. Sucrose synthase activity was low in all tested cultivars at 3 days postanthesis and increased to near maximum levels by 15 days postanthesis. With the exception of triticale 6A190, maximum sucrose synthase activities were approximately 12 m units per seed and did not vary between cultivars. Triticale 6A190 had a maximum sucrose synthase activity of 16.5 m units per seed which occurred at about 21 days postanthesis. Sucrose synthase activity declined at maturity. Sucrose levels varied throughout kernel development. The extent of the variation differed amongst the tested cultivars. Triticale 6A190 had large fluctuations in sucrose level. Sucrose content changed from 1 mg per seed at day 12 to less than 0.1 mg/seed at day 18 to greater than 1 mg per seed at day 28. Hexokinase activity increased throughout kernel development with no substantial decline of activity at maturity. Glucose levels were highest during early kernel development and declined toward maturity. The variations in sucrose and sucrose synthase in triticale 6A190 suggest a malfunction in the metabolism of the line during kernel development. No direct relationship could be established, however, between these abnormalities and kernel shrivelling in 6A190.Key words: Sucrose, sucrose synthase, kernel development, triticale, wheat, rye, hexokinase


Plant Disease ◽  
1999 ◽  
Vol 83 (6) ◽  
pp. 516-520 ◽  
Author(s):  
Yan Feng ◽  
Peter H. Dernoeden

Putting green samples (n = 109) were inspected for the presence of Pythium oospores in roots of plants from golf courses (n = 39) in Maryland and adjacent states. Twenty-eight Pythium isolates were recovered from creeping bentgrass (Agrostis palustris) (n = 25) and annual bluegrass (Poa annua) (n = 3) plants. Most isolates associated with Pythium-induced root dysfunction were from greens less than 3 years of age and were obtained primarily between March and June, 1995 to 1997. Eight Pythium species (P. aristosporum, P. aphanidermatum, P. catenulatum, P. graminicola, P. torulosum, P. vanterpoolii, P. volutum, and P. ultimum var. ultimum) were isolated from creeping bentgrass and two species (P. graminicola and P. torulosum) were from annual bluegrass. All species, except P. catenulatum, were pathogenic to ‘Crenshaw’ creeping bentgrass seedlings in postemergence pathogenicity tests. P. aristosporum (n = 3) and P. aphanidermatum (n = 1) were highly aggressive at a low (18°C) and a high temperature (28°C). P. graminicola (n = 1) was low to moderately aggressive. P. torulosum (n = 12) was the most frequently isolated species, but most isolates were either nonpathogenic or caused very little disease. P. aristosporum (n = 3) and P. aphanidermatum (n = 1) were highly aggressive and were associated with rapid growth at 18 and 28°C on cornmeal agar. P. volutum (n = 1) was highly aggressive at 18°C, but was one of slowest growing isolates. Infected roots were generally symptomless, and the number of oospores observed in roots was not always a good indicator of disease or of the aggressiveness of an isolate. Large numbers of oospores of low or even nonpathogenic species may cause dysfunction of creeping bentgrass roots.


1978 ◽  
Vol 58 (1) ◽  
pp. 199-206 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

Kernel development was studied in the maize (Zea mays L.) hybrids United-H106 and Funk’s G-4444, grown in a controlled-environment growth room. A method was employed in which husks were excised, and kernels were removed from the same set of ears at several subsequent sampling dates. This method did not affect the dry matter accumulation of the remaining kernels. Basal kernels (kernel numbers 6–15 in the row) and tip kernels (kernel numbers 31–40) were removed at 2-day intervals during the period from 10 to 20 days postsilking. Dry weight, ethanol-soluble sugar content, and starch content were determined for each sample. Accumulation of dry matter in the tip kernels ceased in a fraction of the United-H106 ears at the onset of the period of linear tip-kernel dry matter accumulation. Only small differences were observed in sugar content between growing and non-growing tip kernels of ears of United-H106. Starch appeared to continue to accumulate in kernels in which dry matter had ceased to accumulate. Except for a delay of approximately 2 days, the pattern of development of tip kernels in Funk’s G-4444 was similar to that of kernels at the base.


2021 ◽  
pp. 14-19
Author(s):  
K.S. Krishnamurthy ◽  
K. Kandiannan

Source sink relationship, dry matter and starch partitioning, rhizome bulking process in relation to dry matter and starch partitioning in developing rhizomes and growth and gas exchange parameters were studied in three popular varieties of ginger viz., IISR Varada, IISR Mahima and IISR Rejatha. Results revealed that maximum tiller production and leaf area accumulation occurred between 60 and 120 days after planting (DAP) in all three varieties. Photosynthetic rate and hormone contents (auxin and cytokinin) increased from 90-120 DAP, peaked at 120 DAP and then started declining. Biomass partitioning data revealed that the active biomass accumulation stage was between 60 and 150 DAP in ginger. The dry matter accumulation pattern in rhizomes also revealed that maximum dry matter accumulation in rhizomes also occurred between 60 and 150 DAP in all the three varieties. Maximum starch accumulation in the rhizomes also occurred during the same period. These results suggest that most of the rhizome bulking process occurred between 60 and150 DAP in ginger. Total biomass accumulation, dry matter accumulation and starch accumulation in rhizomes followed similar trends.


HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 498b-498
Author(s):  
Paige Hanning ◽  
Dyremple B. Marsh ◽  
Mohsen Dkhili

Chemically fixed nitrogen is a costly import for Caribbean Basin Countries. Increased cost of fertilizer only serves to reduce crop yields in these areas. This greenhouse research was undertaken to evaluate the N2 fixing capabilities and yield potential of several Phaseolus vulgaris lines developed for use in Caribbean Basin countries. Ten common bean lines from breeding programs at the Universities of Puerto Rico and Wisconsin and two efficient Rhizobium phaseoli strains were used for the study. Plants treated with Rhizobium UMR 1899 and UMR 1632 had significantly higher stem and leaf dry weight than the control plants. Bean lines WBR 22-34, WBR 22-50, WBR 22-55, PR9056-98B and the cultivar Coxstone showed increased dry matter accumulation over that of the control plants. Plants treated with the Rhizobium strain UMR 1899 had the highest stem and leaf dry matter accumulation. Nodulation was significantly higher when plants were treated with UMR 1632. The lines WBR 22-34 and PR 9056-98B produced more nodules than the other lines used. Pod yield as measured by number of immature pods was highest for PR 9056-98B when inoculated with Rhizobium UMR 1899.


Sign in / Sign up

Export Citation Format

Share Document