scholarly journals Enforced sialyl‐Lewis‐X (sLeX) display in E‐selectin ligands by exofucosylation is dispensable for CD19‐CAR T‐cell activity and bone marrow homing

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Diego Sánchez‐Martínez ◽  
Francisco Gutiérrez‐Agüera ◽  
Paola Romecin ◽  
Meritxell Vinyoles ◽  
Marta Palomo ◽  
...  
2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A23-A23
Author(s):  
D Lainšček ◽  
V Mikolič ◽  
Š Malenšek ◽  
A Verbič ◽  
R Jerala

BackgroundCD19 CAR T- cells (Chimeric antigen receptor T cells that recognize CD19) present a therapeutic option for various malignant diseases based on their ability to specifically recognize the selected tumour surface markers, triggering immune cell activation and cytokine production that results in killing cancerous cell expressing specific surface markers recognized by the CAR. The main therapeutic effect of CAR is a specific T cell activation of adequate cell number with sequential destruction of tumorous cells in a safe therapeutic manner. In order to increase T cell activation, different activation domains were introduced into CAR. CAR T-cells are highly efficient in tumour cell destruction, but may cause serious side effects that can also result in patient death so their activity needs to be carefully controlled.1 Several attempts were made to influence the CAR T cell proliferation and their activation by adding T cell growth factors, such as IL-2, into patients, however this approach of increasing the number of activating T cells with no external control over their number can again lead to non-optimal therapeutic effects. Different improvements were made by designing synthetic receptors or small molecule-inducible systems etc., which influence regulated expansion and survival of CAR T cells.2Material and MethodsIn order to regulate CD19 CAR-T cell activity, different NFAT2 based artificial transcription factors were prepared. The full length NFAT2, one of the main players in T cell IL2 production, a key cytokine for T cell activation and proliferation was truncated by deletion of its own activation domain. Next, we joined via Gibson assembly tNFAT21-593 coding sequence with domains of different heterodimerization systems that interact upon adding the inductor of heterodimerization. The interaction counterparts were fused to a strong tripartite transcriptional activator domain VPR and/or strong repressor domain KRAB resulting in formation of an engineered NFAT artificial transcription (NFAT-TF) factors with external control. To determine the activity of NFAT-TF HEK293, Jurkat or human T cells were used.ResultsBased on luciferase assay, carried out on NFAT-TF transfected HEK293 cells we first established that upon adding the external inductor of heterodimerization, efficient gene regulation occurs, according to VPR or KRAB domain appropriate functions. Findings were then transferred to Jurkat cells that were electroporated with appropriate DNA constructs, coding for NFAT-TF and CD19 CAR. After Raji:Jurkat co-culture ELISA measurements revealed that IL2 production and therefore CD19 CAR-T cell activity can be controlled by the action of NFAT-TF. The same regulation over the activity and subsequent proliferation status was also observed in retrovirally transduced human T-cells.ConclusionWe developed a regulatory system for therapeutic effect of CD19 CAR-T cells, a unique mechanism to control T cell activation and proliferation based on the engineered NFAT2 artificial transcription factor.ReferencesBonifant CL, et al. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 2016;3:16011.Wu C-Y, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 2015;80:350.Disclosure InformationD. Lainšček: None. V. Mikolič: None. Š. Malenšek: None. A. Verbič: None. R. Jerala: None.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Weihong Chen ◽  
Xin Du ◽  
Wenyujing Zhou ◽  
Changru Luo ◽  
Xiaoqing LI

CASE PRESENTATION: A 68-year-old male was diagnosed with CLL/SLL in November 2007. Bone marrow asp/bx: 36.5% lymphocytes, 78% CD19, 65% ATM (11q22 deleted) positive cells, 13.5% D13S25 (13q14.3 deleted). On December 10, 2009, the patient took FCR scheme for five cycles, followed by FR scheme for one cycle, and then a month of Chlorambucil. On September 5, 2013, the patient took BR scheme for four cycles with no effect. From March 2015 to Feb 2016, 420 mg of Ibrutinib was administered daily. On January 15, 2016, the patient developed swollen lymph nodes in his right neck with intermittent lumps, fever and nausea. He was admitted into the hospital at Feb 2, 2016. Test results: multiple swollen superficial lymph nodes over the body, with the biggest measuring 60×30mm on the right neck, with no tenderness. Supplementary tests: peripheral white blood cells (WBC) 11.94×10E9/L, lymphocyte 7.5×10E9/L, CD19 cells 6.73×10E9/L, bone marrow lymphocyte 62%, peripheral blood lymphocyte 52%. Immunophenotype: CD5, CD19, CD20dim, CD23, CD11b dim, HLA-DR expression, visible CD5+CD19+ cell clusters, and visible immunoglobulin cKappa with restricted expression. On March 10, 2016, peripheral blood platelet 60 × 10E9/L, CD19 cells 1.94×10E9/L, lactate dehydrogenase 460U/L, FER 115.6ng/ml, hepatitis B virus carrier. Diagnosis: CLL/SLL IV stage, ATM (11q22) deletion, D13S25 (13q14. 3) positive, CD19 positive. Relapse of CLL/SLL occurred again after four months and at this stage the patient was considered for therapy in a clinical trial of CD19-specific chimeric antigen receptor (CAR-) T cell therapy. Ethical approval and informed consent were obtained for anti-CD19 CAR T Cell treatment of ibrutinib resistance in relapsed/refractory CLL/SLL. We infused autologous T cells transduced with a CAR T 19 retroviral vector with CLL/SLL at doses of 3.3 × 10E8 CART19 cells on Mar. 16 2016. Patients were monitored for responses, toxic effects, and the expansion and persistence of circulating CART19 cells. After CART19 cells were infused, the patient experienced chills, fever, headache, weak, anorexia, nausea, shortness of breath, chest tightness, heart palpitation, hypotension and shock for 9 days. The serum levels of IFN-Υ were at their highest at day 7 after CAR T cells infusion. Serum interleukin 6 (IL-6) was at 680pg/ml and CD3+ cells were 97.5%, CD8+ cells 72.8% (18.7-32.8%), FER was 1529.5ng/ml (Normal No. 22-322ng/ml) 14 days after CAR-T cell infusion. The serum levels of IL-6 were at their highest at day14. The patient was diagnosed as having cytokine release syndrome. After the patient took the anti-IL-6R antibody and anti-TNF antibody, he began to recover gradually. Enlarge lymph nodes shrunk after being infused with CART19 cells for 7 days. The peripheral blood CD19 B lymphocytes were 0 on day 14 after infused with CAR T19 cells. Q-PCR was used to detect the amount of the peripheral blood CART19 cells, which stood at 5485 copies/μl, 924 copies/μl, 191 copies/μl respectively 2 weeks, 6 weeks and 3 months after infusing with CART19 cells. The peripheral blood CART 19 cells were not detectable 4 months after infusing with CART19 cells until present. The lymphadenopathy was decreased gradually after 14 days of infusion. The MRI test showed that lymphadenopathy reduced markedly or disappeared after 6 months of infusion. ATM (11q22 deleted) negative, D13S25 (13q14.3 deleted) negative. After treatment with CAR T 19 cell therapy for 53 months, the patient remained disease-free, the patient's lymph nodes, lymphocytes and I mmunoglobulins were normal. CONCLUSIONS : Cancer immunotherapy as a method of cancer treatment is the most effective after conventional treatments such as radiotherapy, chemotherapy, and surgery. For BTK Inhibitor resistance in relapsed and refractory CD19+ CLL/SLL, CD19 is a favorable target, because the expression of CD19 is limited to B cells and not present in other tissues or cells. Currently, the efficacy of this treatment in treating CLL/SLL remains to be seen. The effects of chemotherapy on the patient's B cell lymphoma are negligible, due to the fact that his CLL/SLL have become relapsed and refractory. As a result we chose the CAR T19 cell therapy genetic engineering technique as a method of treatment, to which the patient has responded well. Therefor, CAR T cell technology overcome the limitations of existing cancer therapies and has great potential for development and application. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 7 (6) ◽  
pp. e1433518 ◽  
Author(s):  
Concetta Quintarelli ◽  
Domenico Orlando ◽  
Iolanda Boffa ◽  
Marika Guercio ◽  
Vinicia Assunta Polito ◽  
...  
Keyword(s):  
T Cell ◽  

Biology ◽  
2017 ◽  
Vol 6 (4) ◽  
pp. 16 ◽  
Author(s):  
Marco Trinchera ◽  
Adele Aronica ◽  
Fabio Dall’Olio

Biochemistry ◽  
2001 ◽  
Vol 40 (18) ◽  
pp. 5382-5391 ◽  
Author(s):  
Kendra G. Bowman ◽  
Brian N. Cook ◽  
Christopher L. de Graffenried ◽  
Carolyn R. Bertozzi

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4275-4275 ◽  
Author(s):  
Kai Sun ◽  
Xuejun Zhang ◽  
Zhen Wang ◽  
Yuqing Chen ◽  
Lei Zhang ◽  
...  

Abstract Introduction: CD19-specific CAR-T cells have shown promise in the treatment of relapsed or refractory Ph+ ALL. It remains to be established whether allogeneic CAR-T cells have clinical activity in patients with relapsed CML lymphoid blast crisis with a history of allo-HSCT. Here we report our experience in two cases of allogeneic CAR-T cell therapy for treatment of relapse after allo-HSCT in patients with refractory CML lymphoid blast crisis. Methods: For manufacture of allogeneic CAR-T cells, peripheral blood mononuclear cells were collected from the same stem cell donor. Lentiviral construction and generation of CAR-T cells, clinical protocol design, assessment and management of cytokine release syndrome (CRS), were performed as described in our previous report (Leukemia. 2017;31:2587-2593). Fludarabine and cyclophosphamide had been administered for lymphocyte depletion before allogeneic CAR-T cells infusion. Patients: Patient 1 was a 52-year-old woman with refractory CML lymphoid blast crisis, who had a relapse after undergoing allo-HSCT from her daughter (HLA-10/10). Her initial examinations of peripheral blood and bone marrow were consistent with the diagnosis of CML lymphoid blast crisis. Cytogenetics and molecular analysis confirmed the presence of t(9;22)(q34;q11) and BCR-ABL1 210 fusion protein. In February 2017, examination of bone marrow revealed a further increase of lymphoblasts to 83.2%. In addition, ABL1 kinase mutations (Y253H and E255K/V) were identified. The patient underwent HLA 10/10-matched allo-HSCT without acute GVHD. A remission with a negative test for BCR-ABL1 210 and 99.62% donor chimerism had been achieved, then she had a lymphoblastic relapse occurred 2 months after allo-HSCT. Consistently, BCR-ABL1 210 turned positive, and chimerism analysis showed 67.4% donor chimerism. 3 weeks after relapse, allogeneic CAR-T cells were infused at the dose of 5×106 /kg CD19-specific CAR-T cells. Patient 2 was a 39-year-old male patient with relapsed CML lymphoid blast crisis with a history of allo-HSCT. He had received a diagnosis of CML chronic phase 7 years earlier. Bone marrow revealed a karyotype of 46, XY, t(3;9;22)(q27;q34;q11) and BCR-ABL mRNA transcript. From April 2011 to September 2012, the patient was treated with nilotinib. In September 2012, bone marrow examination revealed 78% lymphoblasts, thus the diagnosis of CML lymphoid blast crisis was established. In December 2012, the patient underwent HLA 7/10-matched sibling allo-HSCT (from his brother) without evidence of GVHD and maintained CR for 2 years. In December 2014, the patient developed bone marrow relapse (lymphoblast 9.5%) and extramedullary leukemia (testicular involvement) harboring the BCR-ABL-T315I mutation. During 2014 to 2018, the patient received multiple courses of CIKs, HDMTX and DLI, but failed to achieve CR. In March 2018, the patient received healthy donor derived allogeneic CAR19 T cells (2×105/kg) therapy. Result: Before CAR-T cells infusion, both patients with refractory CML lymphoid blast crisis had a relapse after successful allo-HSCT. Approximately 1 month after CAR-T cells infusion, a persistent morphologic remission, a recovering BM, and complete absence of BCR-ABL mRNA transcripts confirmed morphologic and molecular remission in both patients. Consistent with this, flow cytometry could not detect blasts or CD19+ B lineage cells. Patient 1 did not experience toxicities and allogeneic CAR-T cell therapy was well tolerated. Patient 2 developed severe CRS (Gr 4) including high-grade fevers (>40°C), hypotension, hypoxia, mental status changes, and seizures. These episodes ran for approximately 1 week before they were halted by treatment with steroids plus tocilizumab, and plasma exchange. The toxicity of allogeneic CAR-T cells is correlated with high levels of IL-6, IFN-γ, TNF-a, and CRP. Conclusion: The clinical outcomes from these 2 patients demonstrate the in vivo efficacy of allogeneic CD19-targeted T cells to induce clinical, morphology and molecular remissions as well as B cell aplasia in adults with relapsed CML lymphoid blast crisis with a history of allo-HSCT. The efficacy of allogeneic CAR-T cell therapy may not always be related to the risk of severe CRS. The degree of HLA matching may have a major impact on the prevention of CRS after allogeneic CAR-T cell therapy. Fully HLA-matched-pair may increase the safety and efficacy of the allogeneic CAR-T cell therapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-7
Author(s):  
Rui Zhang ◽  
Juan Xiao ◽  
Zhouyang Liu ◽  
Yuan Sun ◽  
Sanfang Tu ◽  
...  

BACKGROUND: Allogeneic haematopoietic stem cell transplantation (allo-HCT) is a standard treatment for relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL). However ~30-40% of patients (pts) still relapse after HCT. We report a cohort of 20 r/rB-ALL pts, who relapsed after HCT, and enrolled in the CAR2.0 study receiving one or two types of CAR-T cells targeting various B-ALL antigens. METHOD: Pts with r/r B-ALL who relapsed after allo-HCT and did not have significant active comorbiditeis, were enrolled in the study. The target antigens were determined based on immunostaining of each pt's leukemia cells, and CAR-T infusions included a single, or a combination of CAR-Ts targeting the following antigens: CD19, CD22, CD123 and CD38. T cells were collected from pts (N=4) or their allogeneic donors (N=16) and transduced with an apoptosis-inducible, safety-engineered lentiviral CAR with the following intracellular signaling domains: CD28/CD27/CD3ζ-iCasp9 (4SCAR). Pts received cyclophosphamide/fludarabine lymphodepleting therapy before infusion of 0.2-5.8x106 CAR-T/kg per infusion. In addition to disease response, we carefully monitored the quality of apheresis cells, efficiency of gene transfer, T cell proliferation rate, CAR-T infusion dose, and the CAR-T copy number in peripheral blood. RESULTS: Among the 20 enrolled pts, 11 were <18 years of age, and 7 were BCR- ABL (P190) positive. Before CAR-T treatment, 7 pts had ≤grade 2 active graft-versus-host disease (GVHD), and 13 pts received chemotherapy or targeted therapy after their relapse post HCT. Six pts had extramedullary relapse and 2 of them also had bone marrow relapse. The tumor burden in bone marrow ranged from minimal residual disease (MRD) negative to 66% of blasts, based on flow cytometry before CAR-T therapy. Five pts had >10% blasts in bone marrow, 8 pts had <3% blasts, and 7 pts had MRD negative bone marrow (summarized in the Table below). Based on the GVHD history, chimerism state and the available T-cell sources, 16 pts used allogeneic HCT donor T-cells for CAR-T preparation. All pts were full donor chimeras prior to CAR-T infusion, except one pt who had 41% donor cells in bone marrow. Eleven pts received a single CD19 CAR-T infusion, with a mean dose of 1.6x106 CAR-T/kg, and ten achieved an MRD remission and one had progressive disease (PD) within 60 days by flow cytometry. The remaining 9 pts received 2 CAR-Ts (CD19 plus CD22, CD123 or CD38 CAR-Ts) given on the same day, and resulted in 8 CR and 1 PD within 60 days. After CAR-T infusion, no cytokine release syndrome (CRS) was observed in 8 pts, and 12 pts experienced CRS of grade 1, which was consistent with the previously described low toxicity profile of the 4SCAR design. Acute GVHD ≤ grade 2 developed in 5 pts within one month following CAR-T cell infusion but all responded well to supportive care and/or cyclosporine infusion. The 2 pts who developed PD after CAR-T infusion included the one with 41% donor chimerism and had grade 2 GVHD and active infections before CAR-T infusion. The other pt with PD following CAR-T had severe bone marrow suppression, low leukocyte count, infections and was transfusion dependent before enrollment. This emphasizes the need for controlling comorbidities before infusion of CAR-T cells. In summary, total 18 patients (90%) achieved negative MRD remission within 2 months of therapy with acceptable CRS. Four pts relapsed (after being in remission for 3 months) and 14 pts are in continued remission, 6 of which for > 1 year. None of these 20 pts received a second HCT after CAR-T infusion. GVHD developed in 5/16 (31%) pts after donor source CAR-T cell infusion within one month, but all responded well to treatment. CONCLUSION: This study focuses on CAR-T cell therapy following relapse after HCT. While the expanded study is ongoing, we present results of the first 20 pts. Use of donor-derived or recipient-derived CAR-T products in pts who relapsed after allo-HCT is well tolerated and it may prolong life expectancy of these pts while maintaining good quality of life. Table Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2625-2625
Author(s):  
Olga Molostova ◽  
Larisa Shelikhova ◽  
Dina Schneider ◽  
Rimma Khismatullina ◽  
Yakov Muzalevsky ◽  
...  

Introduction CD19 CAR-T cell products were recently approved as therapy for B-lineage malignancies. We initiated an IIT trial where manufacture of CAR-T cells was performed locally using a unique CD19 CAR with potent anti-leukemic effects. Patients and methods A total of 37 pts with relapsed/refractory B-acute lymphoblastic leukemia (12 female, 25 male, median age 10 y) were screened, 27 pts were enrolled for a trial, 10 were eligible for compassionate use of CD19 CAR-T cell therapy. Sixteen patients had relapsed B-ALL after haploidentical HSCT, 19 pts refractory relapse, 2 induction failure, 13 patients had previous blinatumomab infusion. Eighteen patients had >20% blast cells, median bone marrow leukemia burden for patients with full blown disease was 89%, 19 pts had minimal residual disease (MRD) >0.1% in BM, 3 had skeletal involvement with multiple mass lesions, one had CNS involvement. The CliniMACS Prodigy T cell transduction (TCT) process was used to produce CD19 CAR-T cells. The automated production included CD4/CD8 selection, CD3/CD28 stimulation with MACS GMP T Cell TransAct and transduced with lentiviral vector expressing the CD19CAR gene (second generation CD19.4-1BB zeta with alternate transmembrane domain derived from the TNF superfamily) (Lentigen, Miltenyi Biotec company). T cells were expansion over 10 days in the presence of serum-free TexMACS GMP Medium supplemented with MACS GMP IL-7 and IL-15. Final product was administered without cryopreservation to the patients after fludarabine/cyclophosphamide preconditioning. All patients received prophylactic tocilizumab at 8mg/kg before CAR-T cell infusion. Patients did not receive HSCT as consolidation after CAR-T therapy. Results Thirty-five manufacturing cycles were successful. Median transduction efficacy was 60% (20-80). Median expansion of T cells was x 46 (18-51). CD4:CD8 ratio in the final product was 0.73. The cell products were administered at a dose of 3*106/kg of CAR-T cells in 4 pts, 1*106/kg in 9 pts, 0.5*106/kg in 14 pts, 0.1*106/kg in 8 pts. Two patients received 0.1*106/kg of CAR-T cells produced from haploidentical donors. The cytokine release syndrome (CRS) occurred in 22 (59%) pts and was mostly mild and moderate: grade I - 15 pts, grade II- 4 pts, grade III - 2 pt, grade IV - 1 pt. CAR-T cell related encephalopathy occurred in 15 (40%). Grade I-II neurotoxicity developed in 10 pts, grade III - in 2 pt, grade IV - 1 pt, grade V - 2 pt. In one patient with grade V neurotoxicity concomitant K. pneumonia encephalitis was documented. Severe (grade 3-5) CRS and neurotoxicity were associated exclusively with large leukemia burden (>20% in the bone marrow) at enrollment, p=0,002. Thirty-one patient was evaluable for response at day 28. Four pts had persistent leukemia. In 27 (87%) cases Flow MRD-negative remission was achieved. Disease relapse after initial response was registered in 9 (33%) cases (7 patients had CD19 negative, 2 had CD19 positive relapse). At the moment of reporting, 10 patients have died (3 due to sepsis, 1 due to brain edema, 1 due to brain edema and K. pneumonia encephalitis, 5 due to progression of disease or relapse). Twenty-seven pts are alive, 19 in complete remission with a median follow up of 223 days (41-516 days). Conclusion CliniMACS Prodigy TCT process is a robust CAR-T cell manufacturing platform that enables rapid and flexible provision of CAR-T cells to patients in need. Significant toxicity of CD19 CAR-T cells was associated exclusively with high leukemia burden at enrollment. In the absence of HSCT consolidation relapse rate exceeds 30%. Disclosures Schneider: Lentigen Technology, A Miltenyi Biotec Company: Employment. Preussner:Miltenyi Biotec: Employment. Rauser:Miltenyi Biotec: Employment. Orentas:Lentigen Technology Inc., a Miltenyi Biotec Company: . Dropulic:Lentigen Technology, A Miltenyi Biotec Company: Employment. Maschan:Miltenyi Biotec: Other: lecture fee.


Science ◽  
2019 ◽  
Vol 365 (6449) ◽  
pp. 162-168
Author(s):  
Leyuan Ma ◽  
Tanmay Dichwalkar ◽  
Jason Y. H. Chang ◽  
Benjamin Cossette ◽  
Daniel Garafola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document