scholarly journals Superiority of cilostazol among antiplatelet FDA ‐approved drugs against COVID 19 M pro and spike protein: Drug repurposing approach

2020 ◽  
Author(s):  
Mohammed A. Abosheasha ◽  
Afnan H. El‐Gowily
2018 ◽  
Vol 14 (2) ◽  
pp. 106-116 ◽  
Author(s):  
Olujide O. Olubiyi ◽  
Maryam O. Olagunju ◽  
James O. Oni ◽  
Abidemi O. Olubiyi

Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
David Gur ◽  
Theodor Chitlaru ◽  
Emanuelle Mamroud ◽  
Ayelet Zauberman

Yersinia pestis is a Gram-negative pathogen that causes plague, a devastating disease that kills millions worldwide. Although plague is efficiently treatable by recommended antibiotics, the time of antibiotic therapy initiation is critical, as high mortality rates have been observed if treatment is delayed for longer than 24 h after symptom onset. To overcome the emergence of antibiotic resistant strains, we attempted a systematic screening of Food and Drug Administration (FDA)-approved drugs to identify alternative compounds which may possess antibacterial activity against Y. pestis. Here, we describe a drug-repurposing approach, which led to the identification of two antibiotic-like activities of the anticancer drugs bleomycin sulfate and streptozocin that have the potential for designing novel antiplague therapy approaches. The inhibitory characteristics of these two drugs were further addressed as well as their efficiency in affecting the growth of Y. pestis strains resistant to doxycycline and ciprofloxacin, antibiotics recommended for plague treatment.


2019 ◽  
pp. 625-648 ◽  
Author(s):  
Carolina L. Belllera ◽  
María L. Sbaraglini ◽  
Lucas N. Alberca ◽  
Juan I. Alice ◽  
Alan Talevi

Author(s):  
Fatemeh Sadat Hosseini ◽  
Mohammad Reza Motamedi

Background: At the onset of the 2020 year, Coronavirus disease (COVID-19) has become a pandemic and infected many people worldwide. Despite all efforts, no cure was found for this infection. Bioinformatics and medicinal chemistry have a potential role in the primary consideration of drugs to treat this infection. With virtual screening and molecular docking, some potent compounds and medications can be found and modified and then applied to treat disease in the next steps. Methods: By virtual screening method and PRYX software, some Food and Drug Administration (FDA) approved drugs and natural compounds have been docked with the SPIKE protein of SARS-CoV-2. Some more potent agents have been selected, and then new structures are designed with better affinity than them. After that, we searched for the molecules with a similar structure to designed compounds to find the most potent compound to our target. Results: Because of the study of structures and affinities, mulberrofuran G was the most potent compound in this study. The compound has interacted strongly with residues in the probably active site of SPIKE. Conclusion: Mulberrofuran G can be a treatment agent candidate for COVID-19 because of its good affinity to SPIKE of the virus and inhibition of virus-cell adhesion and entrance.


2021 ◽  
Vol 2 (1) ◽  
pp. 16-27
Author(s):  
Zahra Sharifinia ◽  
◽  
Samira Asadi ◽  
Mahyar Irani ◽  
Abdollah Allahverdi ◽  
...  

Objective: The receptor-binding domain (RBD) of the S1 domain of the SARS-CoV- 2 Spike protein performs a key role in the interaction with Angiotensin-converting enzyme 2 (ACE2), leading to both subsequent S2 domain-mediated membrane fusion and incorporation of viral RNA in host cells. Methods: In this study, we investigated the inhibitor’s targeted compounds through existing human ACE2 drugs to use as a future viral invasion. 54 FDA approved drugs were selected to assess their binding affinity to the ACE2 receptor. The structurebased methods via computational ones have been used for virtual screening of the best drugs from the drug database. Key Findings: The ligands “Cinacalcet” and “Levomefolic acid” highaffinity scores can be a potential drug preventing Spike protein of SARS-CoV-2 and human ACE2 interaction. Levomefolic acid from vitamin B family was proved to be a potential drug as a spike protein inhibitor in previous clinical and computational studies. Besides that, in this study, the capability of Levomefolic acid to avoid ACE2 and Spike protein of SARS-CoV-2 interaction is indicated. Therefore, it is worth to consider this drug for more in vitro investigations as ACE2 and Spike protein inhibition candidate. Conclusion: The two Cinacalcet and Levomefolic acid are the two ligands that have highest energy binding for human ACE2 blocking among 54 FDA approved drugs.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1325
Author(s):  
Yoonjung Choi ◽  
Bonggun Shin ◽  
Keunsoo Kang ◽  
Sungsoo Park ◽  
Bo Ram Beck

Previously, our group predicted commercially available Food and Drug Administration (FDA) approved drugs that can inhibit each step of the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using a deep learning-based drug-target interaction model called Molecule Transformer-Drug Target Interaction (MT-DTI). Unfortunately, additional clinically significant treatment options since the approval of remdesivir are scarce. To overcome the current coronavirus disease 2019 (COVID-19) more efficiently, a treatment strategy that controls not only SARS-CoV-2 replication but also the host entry step should be considered. In this study, we used MT-DTI to predict FDA approved drugs that may have strong affinities for the angiotensin-converting enzyme 2 (ACE2) receptor and the transmembrane protease serine 2 (TMPRSS2) which are essential for viral entry to the host cell. Of the 460 drugs with Kd of less than 100 nM for the ACE2 receptor, 17 drugs overlapped with drugs that inhibit the interaction of ACE2 and SARS-CoV-2 spike reported in the NCATS OpenData portal. Among them, enalaprilat, an ACE inhibitor, showed a Kd value of 1.5 nM against the ACE2. Furthermore, three of the top 30 drugs with strong affinity prediction for the TMPRSS2 are anti-hepatitis C virus (HCV) drugs, including ombitasvir, daclatasvir, and paritaprevir. Notably, of the top 30 drugs, AT1R blocker eprosartan and neuropsychiatric drug lisuride showed similar gene expression profiles to potential TMPRSS2 inhibitors. Collectively, we suggest that drugs predicted to have strong inhibitory potencies to ACE2 and TMPRSS2 through the DTI model should be considered as potential drug repurposing candidates for COVID-19.


2019 ◽  
Vol 26 (28) ◽  
pp. 5363-5388 ◽  
Author(s):  
Ananda Kumar Konreddy ◽  
Grandhe Usha Rani ◽  
Kyeong Lee ◽  
Yongseok Choi

: Drug repurposing is a safe and successful pathway to speed up the novel drug discovery and development processes compared with de novo drug discovery approaches. Drug repurposing uses FDA-approved drugs and drugs that failed in clinical trials, which have detailed information on potential toxicity, formulation, and pharmacology. Technical advancements in the informatics, genomics, and biological sciences account for the major success of drug repurposing in identifying secondary indications of existing drugs. Drug repurposing is playing a vital role in filling the gap in the discovery of potential antibiotics. Bacterial infections emerged as an ever-increasing global public health threat by dint of multidrug resistance to existing drugs. This raises the urgent need of development of new antibiotics that can effectively fight multidrug-resistant bacterial infections (MDRBIs). The present review describes the key role of drug repurposing in the development of antibiotics during 2016–2017 and of the details of recently FDA-approved antibiotics, pipeline antibiotics, and antibacterial properties of various FDA-approved drugs of anti-cancer, anti-fungal, anti-hyperlipidemia, antiinflammatory, anti-malarial, anti-parasitic, anti-viral, genetic disorder, immune modulator, etc. Further, in view of combination therapies with the existing antibiotics, their potential for new implications for MDRBIs is discussed. The current review may provide essential data for the development of quick, safe, effective, and novel antibiotics for current needs and suggest acuity in its effective implications for inhibiting MDRBIs by repurposing existing drugs.


Sign in / Sign up

Export Citation Format

Share Document