scholarly journals Upland grassland management influences organo‐mineral soil properties and their hydrological function

Ecohydrology ◽  
2021 ◽  
Author(s):  
Stephanie Bond ◽  
Mike J. Kirkby ◽  
Joseph Holden
Pedosphere ◽  
2021 ◽  
Vol 31 (3) ◽  
pp. 375-383
Author(s):  
Kevin HOEFFNER ◽  
Mathieu SANTONJA ◽  
Cécile MONARD ◽  
Lou BARBE ◽  
Mathilde LE MOING ◽  
...  

2021 ◽  
Author(s):  
Saara Lind ◽  
Marja Maljanen ◽  
Merja Myllys ◽  
Mari Räty ◽  
Sanna Kykkänen ◽  
...  

<p>Agricultural soils are a significant source of greenhouse gas (GHG) emissions. To study these emissions, we are currently building three research platforms that consist of full eddy covariance instrumentation for determination of net ecosystem carbon dioxide exchange and fluxes of methane and nitrous oxide. These platforms will be completed with supporting weather, plant and soil data collection. Two of our platforms are sites on organic soils with a thick peat layer (>60 cm) and the third one is on a mineral soil (silt loam). To study the role of the grassland management practises at these sites, we have initiated ORMINURMI-project. Here, we will characterise the effects of ground water table (high vs. low), crop renewal methods (autumn vs. summer) and plant species (tall fescue vs. red glover grass) on greenhouse gas budgets of grass production. Also effect on yield amount and nutrient quality will be determined. In this presentation, we will present the preliminary data collected at these research platforms and our plans for the use of these data in the coming years.</p>


1993 ◽  
Vol 23 (10) ◽  
pp. 2101-2109 ◽  
Author(s):  
Timo Kuuluvainen ◽  
Timo J. Hokkanen ◽  
Erkki Järvinen ◽  
Timo Pukkala

The spatial structure of vegetation and soil properties of a patchy Scots pine (Pinussylvestris L.) forest of 1 ha was described and examined in relation to the height growth of pine seedlings in the understory. Measured ecosystem properties included the distribution and sizes of canopy trees, within-stand radiation regime, composition of understory vegetation, and topsoil and mineral soil properties. The joint distance dependent effects of large trees were described as the influence potential, derived from the ecological field theory approach. The variation in understory vegetation and soil characteristics was described as score values, derived from multivariate analyses, summarizing the variation of multiple measured variables; factor analysis was used for topsoil and mineral soil properties and canonical correspondence analysis was used for understory species composition. The spatial variation of variables was examined and mapped using geostatistical techniques. The influence potential of canopy trees, as determined by their size and spatial distribution, correlated most strongly with seedling growth, so that the height growth of seedlings was retarded in the vicinity of trees. Correlations suggest that canopy trees also affected seedlings indirectly through their dominating effect on the properties of understory vegetation and humus layer. The mineral soil nutrient content showed a weak positive correlation with seedling height growth. All the factors related to seedling growth showed substantial small-scale variation across the 1-ha study site. The analysis suggests that the variation in seedling height growth in the understory of the studied Scots pine stand is largely caused by the spatial heterogeneity of both above- and below-ground factors and by the joint effect of their complex interaction.


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


2015 ◽  
Vol 12 (22) ◽  
pp. 6737-6749 ◽  
Author(s):  
J. B. Richardson ◽  
A. J. Friedland

Abstract. Climatic changes in the northeastern US are expected to cause coniferous stands to transition to deciduous stands over the next hundred years. Mercury (Hg) sequestration in forest soils may change as a result. In order to understand potential effects of such a transition, we studied aboveground vegetation and soils at paired coniferous and deciduous stands on eight mountains in Vermont and New Hampshire, USA. Organic horizons at coniferous stands accumulated more total Hg (THg; 42 ± 6 g ha−1) than deciduous stands (30 ± 4 g ha−1). Total Hg pools in the mineral horizons were similar for coniferous (46 ± 8 g ha−1) and deciduous stands (45 ± 7 g ha−1). Soil properties (C, % clay, and pH) explained 56 % of the variation in mineral soil Hg concentration when multiply regressed. Foliar and bole wood Hg concentrations were generally greater for coniferous species than deciduous species. Using allometric equations, we estimated that aboveground accumulation of Hg in foliage and woody biomass was similar between vegetation types but that coniferous stands have significantly smaller annual litterfall fluxes (0.03 g ha−1 yr−1) than deciduous stands (0.24 g ha−1 yr−1). We conclude that organic horizon Hg accumulation is influenced by vegetation type but mineral horizon Hg accumulation is primarily controlled by soil properties. Further investigations into the effect of vegetation type on volatilization, atmospheric deposition, and leaching rates are needed to constrain regional Hg cycling rates.


1987 ◽  
Vol 17 (12) ◽  
pp. 1557-1564 ◽  
Author(s):  
R. D. Kabzems ◽  
K. Klinka

Previous attempts to characterize soil nutrient regimes of forest ecosystems have been qualitative evaluations utilizing vegetation and (or) topographic features, morphological soil properties, and mineralogy of soil parent materials. The objective of this study was to describe and provide initial data for quantitative classification of soil nutrient regimes in some Douglas-fir ecosystems on southern Vancouver Island. A multivariate classification using forest floor plus mineral soil mineralizable N and exchangeable Mg quantities was proposed for the four nutrient regimes (poor, medium, rich, and very rich) recognized in this study. Significant differences in mineralizable and total N existed between the four identified soil nutrient regimes. The previous N fertilization of two study sites did not seem to change soil N status sufficiently to alter the classification. The differences in nutrient availability were more distinct when forest floor and mineral soil properties, expressed on an areal basis, were summed. There were no significant differences in exchangeable Ca and Mg for the poor and medium soil nutrient regimes. The humus form of the forest floor was an important characteristic for identifying soil nutrient regimes in the field; however, the nutrient quantities of the forest floor reflected differences in bulk density and depth and did not effectively distinguish between regimes.


2019 ◽  
Author(s):  
Kristen Manies ◽  
Mark Waldrop ◽  
Jennifer Harden

Abstract. Boreal ecosystems comprise about one tenth of the world's land surface and contain over 20 % of the global soil carbon (C) stocks. Boreal soils are unique in that the mineral soil is covered by what can be quite thick layers of organic soil. These organic soil layers, or horizons, can differ in their state of decomposition, source vegetation, and disturbance history. These differences result in varying soil properties (bulk density, C content, and nitrogen (N) content) among soil horizons. Here we summarize these soil properties, as represented by over 3000 samples from Interior Alaska, and examine how soil drainage and stand age affect these attributes. The summary values presented here can be used to gap-fill large datasets when important soil properties were not measured, provide data to initialize process-based models, and validate model results. These data are available at https://doi.org/10.5066/P960N1F9 (Manies, 2019).


Sign in / Sign up

Export Citation Format

Share Document