Proposal of current control method of high-speed AC motor system

2011 ◽  
Vol 176 (1) ◽  
pp. 37-45
Author(s):  
Shinichi Furutani ◽  
Akira Satake
2015 ◽  
Vol 10 (5) ◽  
pp. 2052-2056 ◽  
Author(s):  
Jae-Jun Lee ◽  
Ki-Doek Lee ◽  
Ik-Sang Jang ◽  
Sung-Gu Lee ◽  
Woong-Chan Chae ◽  
...  

Author(s):  
Tohru Watanabe ◽  
Yukishige Fujita ◽  
Mikio Totani

A new inverter-AC motor system having four power source lines, which can control each coil current independently, is compared to an ordinary inverter-AC motor system using a Y-type coil connection and three power lines. In this paper, three-phase rectangular-type currents are generated by the inverter made of simple ICs. In a previous paper[1], similar comparison experiments were executed using a high-speed DSP board. The board can calculate the three-phase currents to generate a rotating, resultant, magnetic flux with a precise constant strength and phase. It was verified by experiments that an energy consumption of 15% can be saved by using the proposed independent, motor-coil currents. However, it requires high speed and high cost DSP or CPU. In this paper, it is verified by using a new inverter-AC motor system that an energy consumption of 15% can be saved, and also the maximum torque increases 10%.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1325 ◽  
Author(s):  
Yuan Zhu ◽  
Ben Tao ◽  
Mingkang Xiao ◽  
Gang Yang ◽  
Xingfu Zhang ◽  
...  

Two problems can cause control performance degradation on permanent magnet synchronous motor (PMSM) systems, namely, fluctuation of PMSM parameters and the time delay between current sampling and command value update. In order to reduce the influence of these problems, a new current-predictive control strategy is proposed in this article for medium- and high-speed PMSM. This strategy is based on the discrete mathematical model of PMSM. This new control strategy consists of two main steps: First, an integrator is applied to calculate current compensation value; second, the predictive current value is obtained through deadbeat-current predictive method. The stability of predictive control system is also proved in the article. With this deadbeat-current predictive control scheme, the real current can reach the desired value within one control-step. Based on this new current control method, Luenberger observer and phase-locked loop position tracker is applied in this article. Experimental results for 0.4 kW surface-mounted PMSM confirm the validity and excellent performance for parameters fluctuation of new current predictive control.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2422 ◽  
Author(s):  
Triet Nguyen-Van ◽  
Rikiya Abe ◽  
Kenji Tanaka

This paper proposes a digital adaptive hysteresis current control method for multi-functional inverters in a power-flow control device called digital grid router. Each inverter can be controlled in master, grid-connected, or stand-alone modes, which can be specified by the controller. While the popular linear sine-triangle pulse width modulation (SPWM) control technique requires complicated proportional-integral (PI) regulators with an unavoidable time delay, hysteresis current control has a simple structure, fast responses, and robustness due to its independent system of parameters. Since the hysteresis current control method controls the output current stay around the reference current directly, in the multi-functional inverter, the reference output is not given by a current directly. Thus, the reference current used to implement the hysteresis current control in this study is calculated from the given reference voltage or power in each control mode. The controller uses high-speed sampled data at MHz level and is implemented by using a field-programmable gate array (FPGA). Experimental results show good performances of the proposed controller in controlling power exchanges in the digital grid router.


2011 ◽  
Vol 328-330 ◽  
pp. 662-666
Author(s):  
Fa Yun Ma ◽  
Hua Wei Li ◽  
Bing Guang Han ◽  
Jian Zhong Xu

The high-speed railway based on electromechanical integration develops rapidly in China in recent years. In order to improve research for electrified railway, a model of AC-DC-AC electric locomotive is established using electro- magnetic transient software PSCAD/EMTDC. In this paper, a single-phase tri-level rectifier of unit power factor and its control strategy of direct transient current control method are introduced at first. And then the working principles of the voltage space vector control strategy of inverter and the vector control strategy of cage motors are analyzed. The inverter and the motors must be as a whole because of the realization of motor vector control based on SVPWM inverter. At last, a model is established and the correctness and effectiveness of the model can be verified by the corresponding theory results. The simulation model is useful for the analysis of low frequency resonance in locomotives. The results will be applied in the research of mechanics and electric coupling in high speed electrified railway.


2013 ◽  
Vol 392 ◽  
pp. 676-681
Author(s):  
Lin Bo Wang ◽  
Hong Kun He ◽  
Lei Shi ◽  
Jin Jin Yang ◽  
Qian Ni Feng

This paper proposes a new digital constant-current control method for high-power LED drive based on buck-boost topology. In this control system, buck-boost topology is used as the power conversion. The output voltage can be either higher or lower than the input voltage in buck-boost topology. Therefore, it solves the problem that in the buck topology the input voltage is required to be always higher than the output voltage. Furthermore, according to the input and output parameters, the duty cycle data which are used to maintain output current constant can be calculated in advance, and stored in the embedded chip. Thus, it can reduce the calculation of the embedded chip and solves the problem that the existing digital constant-current controllers need the high-speed analog-to-digital converter. In addition, in order to reduce the error generated in above calculation, the double threshold feedback circuit is used to fine-tune the duty cycle and makes the output current more steady and accurate. Meanwhile, due to adopting full-digital control, the brightness and flicker frequency of load LED can be conveniently regulated by modifying the system firmware. Therefore, this method can apply to the device of illumination, lighting decoration, visible light communication and so on.


Sign in / Sign up

Export Citation Format

Share Document