An improved current control method for torque improvement of high-speed BLDC motor

Author(s):  
Sung-In Park ◽  
Tae-Sung Kim ◽  
Sung-Chan Ahn ◽  
Dong-Seok Hyun
2015 ◽  
Vol 10 (5) ◽  
pp. 2052-2056 ◽  
Author(s):  
Jae-Jun Lee ◽  
Ki-Doek Lee ◽  
Ik-Sang Jang ◽  
Sung-Gu Lee ◽  
Woong-Chan Chae ◽  
...  

Author(s):  
Rahul Jaiswal ◽  
◽  
Anshul Agarwal ◽  
Richa Negi ◽  
Abhishek Vikram ◽  
...  

This article represents the torque ripple performance of modular multilevel converter (MMC) fed brushless dc (BLDC) motor using different current control technique. For reducing the ripple current in BLDC motor, a phase-modulated model predictive control (PMMPC) technique has been proposed. The stator ripple current is almost negligible using PMMPC. This PMMPC current control method is a significant minimization of torque ripple in BLDC motor. A comparative torque ripple behaviour of MMC fed BLDC motor has been done using phase-modulated model predictive control, model predictive control (MPC) and proportional integral (PI) control at different switching frequency. It has been observed that a PMMPC current control technique is more efficient as compared to the MPC as well as PI current control technique. It has also been observed that the torque ripple performance is improved while using PMMPC as compared to the MPC and PI controller. Simulation results have been verified with the help of experimental result and these results are obtained in good agreement to the simulated results.


Author(s):  
G. G RajaSekhar ◽  
Basavaraja Banakar

<p>Brushless DC motors (BLDC) are predominantly used these days due to its meritorious advantages over conventional motors. The paper presents PV fed BLDC speeds control system. A closed-loop interleaved boost converter increases the voltage from PV system to required level. Converter for BLDC operates at fundamental switching frequency which reduces losses due to high switching frequency. Internal current control method is developed and employed for the speed control of PV fed BLDC motor by sensing the actual speed feedback. Internal current controlled PV fed BLDC drive is analyzed with increamental speed with fixed torque and decreamental speed with fixed torque operating conditions. Also the system with speed control is verified for variable torque condition. The system is developed and results are developed using MATLAB/SIMULINK software.</p><p><em> </em></p>


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1325 ◽  
Author(s):  
Yuan Zhu ◽  
Ben Tao ◽  
Mingkang Xiao ◽  
Gang Yang ◽  
Xingfu Zhang ◽  
...  

Two problems can cause control performance degradation on permanent magnet synchronous motor (PMSM) systems, namely, fluctuation of PMSM parameters and the time delay between current sampling and command value update. In order to reduce the influence of these problems, a new current-predictive control strategy is proposed in this article for medium- and high-speed PMSM. This strategy is based on the discrete mathematical model of PMSM. This new control strategy consists of two main steps: First, an integrator is applied to calculate current compensation value; second, the predictive current value is obtained through deadbeat-current predictive method. The stability of predictive control system is also proved in the article. With this deadbeat-current predictive control scheme, the real current can reach the desired value within one control-step. Based on this new current control method, Luenberger observer and phase-locked loop position tracker is applied in this article. Experimental results for 0.4 kW surface-mounted PMSM confirm the validity and excellent performance for parameters fluctuation of new current predictive control.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2422 ◽  
Author(s):  
Triet Nguyen-Van ◽  
Rikiya Abe ◽  
Kenji Tanaka

This paper proposes a digital adaptive hysteresis current control method for multi-functional inverters in a power-flow control device called digital grid router. Each inverter can be controlled in master, grid-connected, or stand-alone modes, which can be specified by the controller. While the popular linear sine-triangle pulse width modulation (SPWM) control technique requires complicated proportional-integral (PI) regulators with an unavoidable time delay, hysteresis current control has a simple structure, fast responses, and robustness due to its independent system of parameters. Since the hysteresis current control method controls the output current stay around the reference current directly, in the multi-functional inverter, the reference output is not given by a current directly. Thus, the reference current used to implement the hysteresis current control in this study is calculated from the given reference voltage or power in each control mode. The controller uses high-speed sampled data at MHz level and is implemented by using a field-programmable gate array (FPGA). Experimental results show good performances of the proposed controller in controlling power exchanges in the digital grid router.


Author(s):  
Xiaoyuan Wang ◽  
Tao Fu ◽  
Xiaoguang Wang

Brushless DC (BLDC) motors are widely used for many industrial applications because of their high efficiency, high torque and low volume. In view of the problem that the current control method of speed regulation system of BLDC motor has poor control effect caused by fixed parameters of PID controller, an adaptive PID algorithm with quadratic single neuron (QSN) was designed. Quadratic performance index was introduced in adjustment of weight coefficients; expected optimization effect was gotten by calculating control law. QSN adaptive PID controller can change its parameters online when operating conditions are changed, it can also change its control characteristic automatically. Matlab simulations and experiment results showed that the proposed approach has less overshoot, faster response, stronger ability of anti-disturbance, the results also showed more effectiveness and efficiency than the conventional PID model in motor speed control.


2011 ◽  
Vol 328-330 ◽  
pp. 662-666
Author(s):  
Fa Yun Ma ◽  
Hua Wei Li ◽  
Bing Guang Han ◽  
Jian Zhong Xu

The high-speed railway based on electromechanical integration develops rapidly in China in recent years. In order to improve research for electrified railway, a model of AC-DC-AC electric locomotive is established using electro- magnetic transient software PSCAD/EMTDC. In this paper, a single-phase tri-level rectifier of unit power factor and its control strategy of direct transient current control method are introduced at first. And then the working principles of the voltage space vector control strategy of inverter and the vector control strategy of cage motors are analyzed. The inverter and the motors must be as a whole because of the realization of motor vector control based on SVPWM inverter. At last, a model is established and the correctness and effectiveness of the model can be verified by the corresponding theory results. The simulation model is useful for the analysis of low frequency resonance in locomotives. The results will be applied in the research of mechanics and electric coupling in high speed electrified railway.


Sign in / Sign up

Export Citation Format

Share Document