scholarly journals IL-10 promotes homeostatic proliferation of human CD8+memory T cells and, when produced by CD1c+DCs, shapes naive CD8+T-cell priming

2016 ◽  
Vol 46 (7) ◽  
pp. 1622-1632 ◽  
Author(s):  
Giulia Nizzoli ◽  
Paola Larghi ◽  
Moira Paroni ◽  
Maria Cristina Crosti ◽  
Monica Moro ◽  
...  
2002 ◽  
Vol 195 (12) ◽  
pp. 1515-1522 ◽  
Author(s):  
Ananda W. Goldrath ◽  
Pallavur V. Sivakumar ◽  
Moira Glaccum ◽  
Mary K. Kennedy ◽  
Michael J. Bevan ◽  
...  

Both naive and memory T cells undergo antigen-independent proliferation after transfer into a T cell–depleted environment (acute homeostatic proliferation), whereas only memory T cells slowly divide in a full T cell compartment (basal proliferation). We show, first, that naive and memory CD8+ T cells have different cytokine requirements for acute homeostatic proliferation. Interleukin (IL)-7 receptor(R)α–mediated signals were obligatory for proliferation of naive T cells in lymphopenic hosts, whereas IL-15 did not influence their division. Memory T cells, on the other hand, could use either IL-7Rα– or IL-15–mediated signals for acute homeostatic proliferation: their proliferation was delayed when either IL-7Rα was blocked or IL-15 removed, but only when both signals were absent was proliferation ablated. Second, the cytokine requirements for basal and acute homeostatic proliferation of CD8+ memory T cells differ, as basal division of memory T cells was blocked completely in IL-15–deficient hosts. These data suggest a possible mechanism for the dearth of memory CD8+ T cells in IL-15– and IL-15Rα–deficient mice is their impaired basal proliferation. Our results show that naive and memory T lymphocytes differ in their cytokine dependence for acute homeostatic proliferation and that memory T lymphocytes have distinct requirements for proliferation in full versus empty compartments.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2142-2142
Author(s):  
Alwi M. Shatry ◽  
Robert B. Levy

Abstract Minor histocompatibility (MiHA) antigens induce CD8+ T-cell responses that mediate resistance to bone marrow engraftment in an MHC-identical, MiHA-disparate marrow transplant model, in which recipients are sensitized to donor antigens (BALB.B à B6BALB.B) prior to BMT. The H60 H antigen has been shown to dominate the immune response in B6 mice primed with BALB.B antigens (B6BALB.B). We initially sought to determine the distribution and partially characterize the phenotype of H60-specific CD8+ cells in the blood, spleen and marrow compartments of B6 mice primed with 3 x 107 BALB.B lymphoid cells and ≥3 weeks later boosted with 2 x 107 cells. An H60 tetramer (LTFNYRNL/H2-Kb) conjugated to PE was used to detect H60-specific CD8+ cells in these compartments. Eight days following the second immunization, the mean frequency of circulating H60-specific cells was 12.2% ± SE 0.88 of CD8+ cells (range: 5.6 – 20.5%). The frequency of splenic H60-specific CD8+ cells was equivalent to that of circulating antigen-specific cells, thus peripheral blood levels of H60-specific CD8+ cells appear to be representative of those resident in the spleen. Interestingly, in the marrow compartment, the frequency of H-60+ cells amongst the CD8 T cell population was higher compared to peripheral blood and spleen levels, suggesting that H60-specific CD8+ cells in this compartment may comprise both migrant cells from the periphery and resident cells in the marrow elicited during priming. In both BM and spleen, >90% of CD8+ H60+ cells expressed the memory phenotype(CD44+, Ly6C+) and as expected, did not express early activation markers (CD25, CD69). To mediate resistance to progenitor cell engraftment, H60-specific effector CD8+ cell must first survive the immediate post-BMT milieu in the hemopoietic compartments. To examine this question, B6BALB.B mice irradiated at 3.0, 6.0 and 9.0 Gy were analyzed 24 hours later for the presence of H60-specific CD8+ cells in the spleen and marrow compartments. Although there was an expected irradiation dose-dependent decrease in absolute numbers of CD8+ H60+ cells in the two compartments, there was a dose-dependent increase in percent of CD8+ T cells expressing the H60 TCR in both compartments. This observation indicates enhanced survival of these antigen-specific CD8+ memory T cells post-conditioning. Preliminary results indicate that 24h post-BMT into 9.0 Gy TBI recipients, there was BrDU uptake in marrow and splenic CD8+H60+ T cells in B6BALB.B transplanted with 1 x 107 BALB.B BM-TCD. Approximately 80% of CD8+H60+ T cells in the marrow compartment of primed recipients of BALB.B cells exhibited proliferation by BrDU uptake. Thus, donor MiHA-disparate marrow grafts elicit antigen-driven proliferation early post-BMT by CD8+ memory T cells in both compartments consistent with the potential importance of these cells in mediating resistance against progenitor engraftment across these MiHA differences.


2007 ◽  
Vol 179 (3) ◽  
pp. 1988-1995 ◽  
Author(s):  
Tamara Tuuminen ◽  
Eliisa Kekäläinen ◽  
Satu Mäkelä ◽  
Ilpo Ala-Houhala ◽  
Francis A. Ennis ◽  
...  

2003 ◽  
Vol 171 (11) ◽  
pp. 5853-5864 ◽  
Author(s):  
Matthew A. Burchill ◽  
Christine A. Goetz ◽  
Martin Prlic ◽  
Jennifer J. O’Neil ◽  
Ian R. Harmon ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (3) ◽  
pp. 405-412 ◽  
Author(s):  
Marco Frentsch ◽  
Regina Stark ◽  
Nadine Matzmohr ◽  
Sarah Meier ◽  
Sibel Durlanik ◽  
...  

Key Points A major part of CD8+ memory T cells expresses CD40L, the key molecule for T-cell–dependent help. CD40L-expressing CD8+ T cells resemble functional CD4+ helper T cells.


Cell Reports ◽  
2018 ◽  
Vol 25 (1) ◽  
pp. 68-79.e4 ◽  
Author(s):  
Lauren E. Holz ◽  
Julia E. Prier ◽  
David Freestone ◽  
Thiago M. Steiner ◽  
Kieran English ◽  
...  

2020 ◽  
Vol 32 (9) ◽  
pp. 571-581 ◽  
Author(s):  
Shiki Takamura

Abstract Antigen-driven activation of CD8+ T cells results in the development of a robust anti-pathogen response and ultimately leads to the establishment of long-lived memory T cells. During the primary response, CD8+ T cells interact multiple times with cognate antigen on distinct types of antigen-presenting cells. The timing, location and context of these antigen encounters significantly impact the differentiation programs initiated in the cells. Moderate re-activation in the periphery promotes the establishment of the tissue-resident memory T cells that serve as sentinels at the portal of pathogen entry. Under some circumstances, moderate re-activation of T cells in the periphery can result in the excessive expansion and accumulation of circulatory memory T cells, a process called memory inflation. In contrast, excessive re-activation stimuli generally impede conventional T-cell differentiation programs and can result in T-cell exhaustion. However, these conditions can also elicit a small population of exhausted T cells with a memory-like signature and self-renewal capability that are capable of responding to immunotherapy, and restoration of functional activity. Although it is clear that antigen re-encounter during the primary immune response has a significant impact on memory T-cell development, we still do not understand the molecular details that drive these fate decisions. Here, we review our understanding of how antigen encounters and re-activation events impact the array of memory CD8+ T-cell subsets subsequently generated. Identification of the molecular programs that drive memory T-cell generation will advance the development of new vaccine strategies that elicit high-quality CD8+ T-cell memory.


Sign in / Sign up

Export Citation Format

Share Document