Thermal Stability of High Performance Thermoelectric β-Zn4Sb3 in Argon

2011 ◽  
Vol 2011 (17) ◽  
pp. 2733-2737 ◽  
Author(s):  
Hao Yin ◽  
Birgitte L. Pedersen ◽  
Bo B. Iversen
2017 ◽  
Vol 898 ◽  
pp. 2181-2186
Author(s):  
Jing Li ◽  
Jun Rong Yu ◽  
Jing Zhu ◽  
Yan Wang ◽  
Zu Ming Hu ◽  
...  

Solution blow spinning (SBS) is an innovative nanofiber fabricating method with high productivity. 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) / p-phenylenediamine (PDA) / 4,4'-oxydianiline (ODA) co-polyimide nanofiber membrane was efficiently produced by SBS followed by imidization from precursor polyamic acid (PAA) nanofiber membrane in the paper. The morphologies and structures of the obtained PAA and PI nanofiber membrane were examined by SEM and FT-IR. The effect of thermal imidization temperature on the tensile property was investigated. The thermal stability of polyimide nanofiber membrane was also characterized by TGA.


2018 ◽  
Vol 6 (35) ◽  
pp. 17171-17176 ◽  
Author(s):  
Lasse Rabøl Jørgensen ◽  
Jiawei Zhang ◽  
Christian Bonar Zeuthen ◽  
Bo Brummerstedt Iversen

The thermal stability of the high performance n-type Te-doped Mg3Sb1.5Bi0.5 system is investigated.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 644 ◽  
Author(s):  
Farimah Tikhani ◽  
Shahab Moghari ◽  
Maryam Jouyandeh ◽  
Fouad Laoutid ◽  
Henri Vahabi ◽  
...  

For the first time, nano-scale aluminum hypophosphite (AlPO2) was simply obtained in a two-step milling process and applied in preparation of epoxy nanocomposites varying concentration (0.1, 0.3, and 0.5 wt.% based on resin weight). Studying the cure kinetics and thermal stability of these nanocomposites would pave the way toward the design of high-performance nanocomposites for special applications. Scanning electron microscopy (SEM) and transmittance electron microscopy (TEM) revealed AlPO2 particles having domains less than 60 nm with high potential for agglomeration. Excellent (at heating rate of 5 °C/min) and Good (at heating rates of 10, 15 and 20 °C/min) cure states were detected for nanocomposites under nonisothermal differential scanning calorimetry (DSC). While the dimensionless curing temperature interval (ΔT*) was almost equal for epoxy/AlPO2 nanocomposites, dimensionless heat release (ΔH*) changed by densification of polymeric network. Quantitative cure analysis based on isoconversional Friedman and Kissinger methods gave rise to the kinetic parameters such as activation energy and the order of reaction as well as frequency factor. Variation of glass transition temperature (Tg) was monitored to explain the molecular interaction in the system, where Tg increased from 73.2 °C for neat epoxy to just 79.5 °C for the system containing 0.1 wt.% AlPO2. Moreover, thermogravimetric analysis (TGA) showed that nanocomposites were thermally stable.


1995 ◽  
Vol 405 ◽  
Author(s):  
F. Hyuga ◽  
T. Nittono ◽  
K. Watanabe ◽  
T. Furuta

AbstractThermal stabilities of GaAs/InGaP and InGaP/(In)GaAs interfaces are investigated using InGaP/(In)GaAs/InGaP single quantum wells. Annealing is performed at a temperature range between 600 and 900 °C for 10 min. Positions and the full widths at half maximum (FWHM) of photoluminescence (PL) peaks are almost identical to those of as-grown ones up to 800 °C. Blue shifts of PL peaks and increased widths of their FWHM observed after 900 °C annealing are suppressed by shortening the annealing time to 0.1 sec. Annealing at 900 ‘C for 0.1 sec is sufficient to activate Si ions implanted into (In)GaAs layers. As a result, these thermal stabilities are able to provide high reliability and high performance of InGaP/(In)GaAs heterostructure MESFET ICs.


2011 ◽  
Author(s):  
H. S. Shin ◽  
S. K. Oh ◽  
M. H. Kang ◽  
H. M. Kwon ◽  
J. Oh ◽  
...  

2005 ◽  
Vol 97 (7) ◽  
pp. 074110 ◽  
Author(s):  
Olivier Cambon ◽  
Julien Haines ◽  
Guillaume Fraysse ◽  
Jacques Détaint ◽  
Bernard Capelle ◽  
...  

2015 ◽  
Vol 120 ◽  
pp. 402-409 ◽  
Author(s):  
Kristina Gusakova ◽  
Jean-Marc Saiter ◽  
Olga Grigoryeva ◽  
Fabrice Gouanve ◽  
Alexander Fainleib ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document