Thermal Stability of GaAs/InGaP and InGaP/(In)GaAs Interfaces

1995 ◽  
Vol 405 ◽  
Author(s):  
F. Hyuga ◽  
T. Nittono ◽  
K. Watanabe ◽  
T. Furuta

AbstractThermal stabilities of GaAs/InGaP and InGaP/(In)GaAs interfaces are investigated using InGaP/(In)GaAs/InGaP single quantum wells. Annealing is performed at a temperature range between 600 and 900 °C for 10 min. Positions and the full widths at half maximum (FWHM) of photoluminescence (PL) peaks are almost identical to those of as-grown ones up to 800 °C. Blue shifts of PL peaks and increased widths of their FWHM observed after 900 °C annealing are suppressed by shortening the annealing time to 0.1 sec. Annealing at 900 ‘C for 0.1 sec is sufficient to activate Si ions implanted into (In)GaAs layers. As a result, these thermal stabilities are able to provide high reliability and high performance of InGaP/(In)GaAs heterostructure MESFET ICs.

1989 ◽  
Vol 160 ◽  
Author(s):  
B. Elman ◽  
Emil S. Koteles ◽  
P. Melman ◽  
C.A. Armiento ◽  
C. Jagannath

AbstractWe present a study of the structural stability of InGaAs/GaAs strained single quantum wells (SQW) grown with a variety of indium compositions and with well widths close to critical thickness values. The samples were grown by molecular beam epitaxy and were subjected to furnace annealing as well as ion implantation followed by rapid thermal annealing. Changes in low temperature photoluminescence linewidths were used to evaluate the stability of strained SQWs. We observed both strain relief, in wide SQWs and strain recovery, in higher indium composition narrow quantum wells which were partially relaxed (low dislocation density) as-grown.


2011 ◽  
Vol 2011 (17) ◽  
pp. 2733-2737 ◽  
Author(s):  
Hao Yin ◽  
Birgitte L. Pedersen ◽  
Bo B. Iversen

2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


1998 ◽  
Vol 543 ◽  
Author(s):  
T. Çağin ◽  
Y. Zhou ◽  
E. S. Yamaguchi ◽  
R. Frazier ◽  
A. Ho ◽  
...  

AbstractTo understand antiwear phenomena in motor engines at the atomic level and provide evidence inselecting future ashless wear inhibitors, we studied the thermal stability of the self-assembled monolayer(SAM) model for dithiophosphate (DTP) and dithiocarbamate (DTC) molecules on the iron oxidesurface using molecular dynamics. The interactions for DTP, DTC and Fe2O3 are evaluated based on aforce field derived from fitting to ab initio quantum chemical calculations of dimethyl DTP (and DTC)and Fe(OH)2(H2O)2-DTP (DTC) clusters. MD simulations at constant-NPT are conducted to assesrelative thermal stabilities of the DTP and DTC with different pendant groups (n-propyl, i-propyl, npentyl.and i-pentyl). To investigate frictional process, we employ a steady state MD method, in whichone of the Fe2O3 slabs maintained at a constant linear velocity. We obtain the time averaged normaland frictional forces from the interatomic forces. Then, we calculated the friction coefficient at theinterface between SAMs of DTP and the confined lubricant, hexadecane, to assess the shear stability ofDTPs with different pendant groups.


2017 ◽  
Vol 898 ◽  
pp. 2181-2186
Author(s):  
Jing Li ◽  
Jun Rong Yu ◽  
Jing Zhu ◽  
Yan Wang ◽  
Zu Ming Hu ◽  
...  

Solution blow spinning (SBS) is an innovative nanofiber fabricating method with high productivity. 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) / p-phenylenediamine (PDA) / 4,4'-oxydianiline (ODA) co-polyimide nanofiber membrane was efficiently produced by SBS followed by imidization from precursor polyamic acid (PAA) nanofiber membrane in the paper. The morphologies and structures of the obtained PAA and PI nanofiber membrane were examined by SEM and FT-IR. The effect of thermal imidization temperature on the tensile property was investigated. The thermal stability of polyimide nanofiber membrane was also characterized by TGA.


2018 ◽  
Vol 6 (35) ◽  
pp. 17171-17176 ◽  
Author(s):  
Lasse Rabøl Jørgensen ◽  
Jiawei Zhang ◽  
Christian Bonar Zeuthen ◽  
Bo Brummerstedt Iversen

The thermal stability of the high performance n-type Te-doped Mg3Sb1.5Bi0.5 system is investigated.


1995 ◽  
Vol 384 ◽  
Author(s):  
R. D. Mcmichael ◽  
W. F. Egelhoff ◽  
Minh Ha

ABSTRACTIn order to improve the thermal stability of magnetic multilayer “spin valve” structures, we have measured the magnetic and magnetoresistive properties of a number of samples with the general structure of NiO/Co/Cu/Co/Cu/Co/NiO as a function of annealing time at 250 °C. The magnetoresistance (MR) of the samples annealed in air decreases proportionally to the square root of the annealing time. For samples annealed in a vacuum, the decrease in magnetoresistance is reduced, but not eliminated. Magnetometry of a vacuum annealed NiO/Co/NiO sample shows a magnetization reduction and a coercivity increase which suggest oxidation of the NiO-biased “outer” Co layers of the spin valve structure. For increasing NiObiased Co layer thickness, we show enhanced thermal stability and even increasing MR with annealing time for samples with the thickest outer Co layers.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 644 ◽  
Author(s):  
Farimah Tikhani ◽  
Shahab Moghari ◽  
Maryam Jouyandeh ◽  
Fouad Laoutid ◽  
Henri Vahabi ◽  
...  

For the first time, nano-scale aluminum hypophosphite (AlPO2) was simply obtained in a two-step milling process and applied in preparation of epoxy nanocomposites varying concentration (0.1, 0.3, and 0.5 wt.% based on resin weight). Studying the cure kinetics and thermal stability of these nanocomposites would pave the way toward the design of high-performance nanocomposites for special applications. Scanning electron microscopy (SEM) and transmittance electron microscopy (TEM) revealed AlPO2 particles having domains less than 60 nm with high potential for agglomeration. Excellent (at heating rate of 5 °C/min) and Good (at heating rates of 10, 15 and 20 °C/min) cure states were detected for nanocomposites under nonisothermal differential scanning calorimetry (DSC). While the dimensionless curing temperature interval (ΔT*) was almost equal for epoxy/AlPO2 nanocomposites, dimensionless heat release (ΔH*) changed by densification of polymeric network. Quantitative cure analysis based on isoconversional Friedman and Kissinger methods gave rise to the kinetic parameters such as activation energy and the order of reaction as well as frequency factor. Variation of glass transition temperature (Tg) was monitored to explain the molecular interaction in the system, where Tg increased from 73.2 °C for neat epoxy to just 79.5 °C for the system containing 0.1 wt.% AlPO2. Moreover, thermogravimetric analysis (TGA) showed that nanocomposites were thermally stable.


Sign in / Sign up

Export Citation Format

Share Document