Dielectrophoretic investigation of plant virus particles: Cow Pea Mosaic Virus and Tobacco Mosaic Virus

2006 ◽  
Vol 27 (20) ◽  
pp. 3939-3948 ◽  
Author(s):  
Irina Ermolina ◽  
Joel Milner ◽  
Hywel Morgan
1965 ◽  
Vol 25 (3) ◽  
pp. 77-97 ◽  
Author(s):  
L. Kolehmainen ◽  
H. Zech ◽  
D. von Wettstein

The submicroscopic organization of mesophyll cells from tobacco leaves systemically infected with tobacco mosaic virus (TMV) is described. After fixation with glutaraldehyde and osmium tetroxide the arrangement of the TMV particles within the crystalline inclusions is well preserved. Only the ribonucleic acid-containing core of the virus particles is visible in the micrographs. Besides the hexagonal virus crystals, several characteristic types of "inclusion bodies" are definable in the cytoplasm: The so-called fluid crystals seem to correspond to single layers of oriented TMV particles between a network of the endoplasmic reticulum and ribosomes. Unordered groups or well oriented masses of tubes with the diameter of the TMV capsid are found in certain areas of the cytoplasm. A complicated inclusion body is characterized by an extensively branched and folded part of the endoplasmic reticulum, containing in its folds long aggregates of flexible rods. Certain parts of the cytoplasm are filled with large, strongly electron-scattering globules, probably of lipid composition. These various cytoplasmic differentiations and the different forms of presumed virus material are discussed in relation to late stages of TMV reproduction and virus crystal formation.


2018 ◽  
Vol 7 (3) ◽  
pp. 187-193
Author(s):  
Esra Icik ◽  
Sabine Eiben ◽  
Nicole Schädel ◽  
Julia Kupka ◽  
Maike Martini ◽  
...  

Virology ◽  
2001 ◽  
Vol 284 (2) ◽  
pp. 223-234 ◽  
Author(s):  
Yurii G. Kuznetsov ◽  
Steven B. Larson ◽  
John Day ◽  
Aaron Greenwood ◽  
Alexander McPherson

2019 ◽  
Vol 25 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Song Bai ◽  
Yunying Zhu ◽  
Qin Wu

AbstractA series of novel chiral 5-(substituted aryl)-1,3,4-thiadiazole derivatives was synthesized in an enantioselective three-component Mannich reaction using cinchona alkaloid squaramide catalyst with excellent enantioselectivities (up to >99% enantiomeric excess (ee)). The bioassay results showed that these derivatives possessed good to excellent activities against tobacco mosaic virus (TMV).


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 65 ◽  
Author(s):  
Ya-Han Chen ◽  
Dong-Sheng Guo ◽  
Mei-Huan Lu ◽  
Jian-Ying Yue ◽  
Yan Liu ◽  
...  

The coumarin compound of osthole was extracted from Cnidium monnieri and identified by LC-MS and 1H- and 13C-NMR. Osthole was tested for anti-virus activity against tobacco mosaic virus (TMV) using the half-leaf method. The results showed that stronger antiviral activity on TMV infection appeared in Nicotiana glutinosa than that of eugenol and ningnanmycin, with inhibitory, protective, and curative effects of 72.57%, 70.26%, and 61.97%, respectively. Through observation of the TMV particles, we found that osthole could directly affect the viral particles. Correspondingly, the level of coat protein detected by Western blot was significantly reduced when the concentrations of osthole increased in tested plants compared to that of the control. These results suggest that osthole has anti-TMV activity and may be used as a biological reagent to control the plant virus in the half-leaf method.


2019 ◽  
Vol 7 (11) ◽  
pp. 1842-1846 ◽  
Author(s):  
Jooneon Park ◽  
Huiyun Gao ◽  
Yunmei Wang ◽  
He Hu ◽  
Daniel I. Simon ◽  
...  

TMV-based plant virus nanoparticles targeting S100A9 exhibited high specificity to atherosclerotic lesions in ApoE−/− mice, which provides a new diagnostic strategy for atherosclerosis with high risk factors.


2005 ◽  
Vol 79 (22) ◽  
pp. 14421-14428 ◽  
Author(s):  
Alexey I. Prokhnevsky ◽  
Valera V. Peremyslov ◽  
Valerian V. Dolja

ABSTRACT The cell-to-cell movement of plant viruses involves translocation of virus particles or nucleoproteins to and through the plasmodesmata (PDs). As we have shown previously, the movement of the Beet yellows virus requires the concerted action of five viral proteins including a homolog of cellular ∼70-kDa heat shock proteins (Hsp70h). Hsp70h is an integral component of the virus particles and is also found in PDs of the infected cells. Here we investigate subcellular distribution of Hsp70h using transient expression of Hsp70h fused to three spectrally distinct fluorescent proteins. We found that fluorophore-tagged Hsp70h forms motile granules that are associated with actin microfilaments, but not with microtubules. In addition, immobile granules were observed at the cell periphery. A pairwise appearance of these granules at the opposite sides of cell walls and their colocalization with the movement protein of Tobacco mosaic virus indicated an association of Hsp70h with PDs. Treatment with various cytoskeleton-specific drugs revealed that the intact actomyosin motility system is required for trafficking of Hsp70h in cytosol and its targeting to PDs. In contrast, none of the drugs interfered with the PD localization of Tobacco mosaic virus movement protein. Collectively, these findings suggest that Hsp70h is translocated and anchored to PDs in association with the actin cytoskeleton.


1999 ◽  
Vol 354 (1383) ◽  
pp. 603-611 ◽  
Author(s):  
John G. Shaw

In order to establish infections, viruses must be delivered to the cells of potential hosts and must then engage in activities that enable their genomes to be expressed and replicated. With most viruses, the events that precede the onset of production of progeny virus particles are referred to as the early events and, in the case of positive–strand RNA viruses, they include the initial interaction with, and the entry of, host cells and the release (uncoating) of the genome from the virus particles. Though the early events remain one of the more poorly understood areas of plant virology, the virus with which most of the relevant research has been performed is tobacco mosaic virus (TMV). In spite of this effort, there remains much uncertainty about the form or constituent of the virus that actually enters the initially invaded cell in a plant and about the mechanism(s) that trigger the subsequent uncoating (virion disassembly) reactions. A variety of approaches have been used in attempts to determine the fate of TMV particles that are involved in the establishment of an infection and these are briefly described in this review. In some recent work, it has been proposed that the uncoating process involves the bidirectional release of coat protein subunits from the viral RNA and that these activities may be mediated by cotranslational and coreplicational disassembly mechanisms.


Sign in / Sign up

Export Citation Format

Share Document