scholarly journals Efficiency Improvement of Chemical Looping Combustion Combined Cycle Power Plants

2019 ◽  
Vol 7 (11) ◽  
pp. 1900567 ◽  
Author(s):  
Mohammed N. Khan ◽  
Schalk Cloete ◽  
Shahriar Amini
2021 ◽  
Author(s):  
Basavaraja Revappa Jayadevappa

Abstract Operation of power plants in carbon dioxide capture and non-capture modes and energy penalty or energy utilization in such operations are of great significance. This work reports on two gas fired pressurized chemical-looping combustion power plant lay-outs with two inbuilt modes of flue gas exit namely, with carbon dioxide capture mode and second mode is letting flue gas (consists carbon dioxide and water) without capturing carbon dioxide. In the non-CCS mode, higher thermal efficiencies of 54.06% and 52.63% efficiencies are obtained with natural gas and syngas. In carbon capture mode, a net thermal efficiency of 52.13% is obtained with natural gas and 48.78% with syngas. The operating pressure of air reactor is taken to be 13 bar for realistic operational considerations and that of fuel reactor is 11.5 bar. Two power plant lay-outs developed based combined cycle CLC mode for natural gas and syngas fuels. A single lay-out is developed for two fuels with possible retrofit for dual fuel operation. The CLC Power plants can be operated with two modes of flue gas exit options and these operational options makes them higher thermal efficient power plants.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


2000 ◽  
Author(s):  
Hongguang Jin ◽  
Masaru Ishida

Abstract A new type of integrated gasification combined cycle (IGCC) with chemical-looping combustion and saturation for air is proposed and investigated. Chemical-looping combustion may be carried out in two successive reactions between two reactors, a reduction reactor (coal gas with metal oxides) and an oxidation reactor (the reduced metal with oxygen in air). The study on the new system has revealed that the thermal efficiency of this new-generation power plant will be increased by approximately 10–15 percentage points compared to the conventional IGCC with CO2 recovery. Furthermore, to develop the chemical-looping combustor, we have experimentally examined the kinetic behavior between solid looping materials and coal gas in a high-pressure fixed bed reactor. We have identified that the coal gas chemical-looping combustor has much better reactivity, compared to the natural gas one. This finding is completely different from the direct combustion in which combustion with natural gas is much easier than that with other fuels. Hence, this new type of coal gas combustion will make breakthrough in clean coal technology by simultaneously resolving energy and environment problems.


Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

Chemical-looping combustion holds significant promise as one of the next generation combustion technology for high-efficiency low-cost carbon capture from fossil fuel power plants. For thorough understanding of the chemical-looping combustion process and its successful implementation in CLC based industrial scale power plants, the development of high-fidelity modeling and simulation tools becomes essential for analysis and evaluation of efficient and cost effective designs. In this paper, multiphase flow simulations of coal-direct chemical-looping combustion process are performed using ANSYS Fluent CFD code. The details of solid-gas two-phase hydrodynamics in the CLC process are investigated by employing the Lagrangian particle-tracking approach called the discrete element method (DEM) for the movement and interaction of solid coal particles moving inside the gaseous medium created due to the combustion of coal particles with an oxidizer. The CFD/DEM simulations show excellent agreement with the experimental results obtained in a laboratory scale fuel reactor in cold flow conditions. More importantly, simulations provide important insights for making changes in fuel reactor configuration design that have resulted in significantly enhanced performance.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3443
Author(s):  
Mohammed N. Khan ◽  
Schalk Cloete ◽  
Shahriar Amini

Chemical looping combustion (CLC) technology generates power while capturing CO2 inherently with no direct energy penalty. However, previous studies have shown significant energy penalties due to low turbine inlet temperature (TIT) relative to a standard natural gas combined cycle plant. The low TIT is limited by the oxygen carrier material used in the CLC process. Therefore, in the current study, an additional combustor is included downstream of the CLC air reactor to raise the TIT. The efficient production of clean hydrogen for firing the added combustor is key to the success of this strategy. Therefore, the highly efficient membrane-assisted chemical looping reforming (MA-CLR) technology was selected. Five different integrations between CLC and MA-CLR were investigated, capitalizing on the steam in the CLC fuel reactor outlet stream to achieve highly efficient reforming in MA-CLR. This integration reduced the energy penalty as low as 3.6%-points for power production only (case 2) and 1.9%-points for power and hydrogen co-production (case 4)—a large improvement over the 8%-point energy penalty typically imposed by post-combustion CO2 capture or CLC without added firing.


Sign in / Sign up

Export Citation Format

Share Document