A review of high‐temperature foam for improving steam flooding effect: mechanism and application of foam

2022 ◽  
Author(s):  
Fajun Zhao ◽  
Kai Wang ◽  
Guo Li ◽  
Guangmeng Zhu ◽  
Lei Liu ◽  
...  
2021 ◽  
Author(s):  
Xianjun Wang ◽  
Xiangbin Liu ◽  
Borui Li ◽  
Qiang Yin ◽  
Zhonglian Han ◽  
...  

Abstract The reservoir of Daqing Heidimiao Oilfield (permeability 1736×10−3μm2) contains heavy oil, with the average viscosity of 3306 mPa•s. It is developed by steam flooding and steam huff and puff, however, the recovery rate is only 14.6%. Therefore, the multi-component thermal fluid huff-and-puff technology is applied to, dealing with pertinent problems such as gas channeling, corrosion and oil pump lock in the process so as to improve oil recovery and production. Mechanism: Cooling by water, the ultra-high temperature gas generated via combustion of diesel or natural gas with air produces a multi-component thermal fluid containing CO2,N2 and vapor, combining the advantages of gas absorption and thermal recovery. Simulation: A multi-component and multi-phase percolation model is built to optimize the huff-and-puff parameters including composition ratio, temperature and injection volume. Supporting techniques: a high temperature oil-and-acid resistant foam system to form a precedent-blocking slug and automatically adjust the huff-and-puff profile. a dedicated low-cost and high-efficiency corrosion inhibitor system to realize corrosion-resistance. a four-node down-hole gas-liquid separation device to increase efficiency. The comprehensive reduced-viscosity rate is more than 30%; high-pressure air chambers, ranging from 0.2 to 2.0MPa, are formed for elastic energy replenishment. Field tests show the average annual oil increase per well is about 3800 barrels, with the highest being about 7200 barrels. The numerical simulation results show that the optimal composition ratio (N2: CO2: vapor) is 5:1:1.5, that the best injection amount is 30∼50×104Nm3 and that the injection temperature is preferably 280 ∼ 300 °C. The oil-and-acid resistant foaming agent has improved recovery efficiency, as a significantly improved profile of gas absorption, and the oil extraction degree increases by about 31.5%. High temperature corrosion is prevented, through intermittent injection of high-temperature-resistant corrosion inhibitor (corrosion inhibition rate 70.5% at 350 °C), and the frequency of pipeline corrosion is reduced averagely by 98.5%. Air-lock in pump vanishes via gas-liquid separation devise, with the average indoor pump efficiency increases by more than 50% (gas-liquid ratio ≤3000m3/m3)and the one in field test increases from less than 20% to over 45%. More importantly, the maintenance period has reached 662d. This technology has been applied to 98 wells in Daqing to date, 95 of which are stimulated successfully. The multi-component thermal fluid huff-and-puff technology solves the problems such as gas channeling, corrosion and air-lock in pumps through supporting techniques and the synergism of steam flooding and thermal recovery to enhance oil recovery and can be used as a superseded technology after steam huff-and-puff treatment to increase the EUR, especially for heavy oil reservoirs with medium and high permeability.


2016 ◽  
Vol 852 ◽  
pp. 509-513
Author(s):  
Yan Zhi Wang ◽  
Bao Yan Liang ◽  
Wang Xi Zhang ◽  
Yan Xiang Feng ◽  
Yun Chao Mu

ZnO nanometer materials were synthesized by microwave reaction from ZnO micrometer powders with different C aids. Effect of C style on the morphology of ZnO products was studied. The result show that ZnO nanometer materials can not be formed by using directly high temperature evaporation from ZnO micrometer powders without C aids. Fine ZnO nanometer crystals can be obtained by using carbon black as aids. In this sample, most ZnO grains were nanometer particles with a size of about 100nm. And a small amount of ZnO grains were short rods with a length of 1~2μm and a average diameter of 100nm. Amounts of short columnar and long zigzag ZnO crystals can be obtained by using graphite as aids. One effect mechanism of ZnO crystalline was proposed. ZnO reacted C to form CO and CO2 gas. Concentration of CO/CO2 directly effects the morphology of ZnO in the products.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Changjiu Wang ◽  
Huiqing Liu ◽  
Qiang Zheng ◽  
Yongge Liu ◽  
Xiaohu Dong ◽  
...  

Controlling the phenomenon of steam channeling is a major challenge in enhancing oil recovery of heavy oil reservoirs developed by steam injection, and the profile control with gel is an effective method to solve this problem. The use of conventional gel in water flooding reservoirs also has poor heat stability, so this paper proposes a new high-temperature gel (HTG) plugging agent on the basis of a laboratory experimental investigation. The HTG is prepared with nonionic filler and unsaturated amide monomer (AM) by graft polymerization and crosslinking, and the optimal gel formula, which has strong gelling strength and controllable gelation time, is obtained by the optimization of the concentration of main agent, AM/FT ratio, crosslinker, and initiator. To test the adaptability of the new HTG to heavy oil reservoirs and the performance of plugging steam channeling path and enhancing oil recovery, performance evaluation experiments and three-dimensional steam flooding and gel profile control experiments are conducted. The performance evaluation experiments indicate that the HTG has strong salt resistance and heat stability and still maintains strong gelling strength after 72 hrs at 200 °C. The singular sand-pack flooding experiments suggest that the HTG has good injectability, which can ensure the on-site construction safety. Moreover, the HTG has a high plugging pressure and washing out resistance to the high-temperature steam after gel forming and keeps the plugging ratio above 99.8% when the following steam injected volume reaches 10 PV after gel breakthrough. The three-dimensional steam flooding and gel profile control experiments results show that the HTG has good plugging performance in the steam channeling path and effectively controls its expanding. This forces the following steam, which is the steam injected after the gelling of HTG in the model, to flow through the steam unswept area, which improves the steam injection profile. During the gel profile control period, the cumulative oil production increases by 294.4 ml and the oil recovery is enhanced by 8.4%. Thus, this new HTG has a good effect in improving the steam injection profile and enhancing oil recovery and can be used to control the steam channeling in heavy oil reservoirs.


2018 ◽  
Vol 54 (2) ◽  
pp. 187-194
Author(s):  
Fa-Jun Zhao ◽  
Yong-Jian Liu ◽  
Yun-Long Wang ◽  
Hao-liang Liu ◽  
Hai-cheng Ma

1997 ◽  
Vol 56 (10) ◽  
pp. 6120-6147 ◽  
Author(s):  
V. J. Emery ◽  
S. A. Kivelson ◽  
O. Zachar

Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Sign in / Sign up

Export Citation Format

Share Document