Lattice Imaging of Grain Boundaries in Ceramics

Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.

1994 ◽  
Vol 365 ◽  
Author(s):  
Stuart T. Schwab ◽  
Richard A. Page ◽  
David L. Davidson ◽  
Renee C. Graef

ABSTRACTPolymer infiltration/pyrolysis (PIP) processing has the potential to become an affordable means of manufacturing continuous fiber-reinforced ceramic-matrix components. The PIP method is very similar to the well-known polymer-matrix and carbon-carbon composite manufacturing techniques, the major difference being the use of a preceramic polymer in place of the organic polymer or carbon precursor. To date, the majority of research in the field of preceramic polymers has centered on precursors to silicon carbide (SiC). The Southwest Research Institute (SwRI) has focused on the development of polymeric precursors to silicon nitride (Si3N4) because its high-temperature strength, resistance to oxidation, and other properties make it an attractive candidate for many advanced high-temperature structural applications. PIP Si3N4 composites with NICALON SiC fiber reinforcement have exhibited good fracture toughness (KIC ∼ 16MPa·m1/ 2). We report here processing, microstructure and preliminary mechanical properties of two new PIP Si3N4 composites. One is reinforced with Tonen Si3N4 fiber (plain weave) while the other is reinforced with ALMAX Al2O3 fiber (8 Harness satin weave).


2000 ◽  
Vol 6 (S2) ◽  
pp. 424-425
Author(s):  
R. Mitra ◽  
W.-A. Chiou ◽  
A. Venugopal Rao

Molybdenum di-silicides (MoSi2) based materials have a strong potential for high temperature structural applications due to high melting point of 2030°C, outstanding elevated temperature oxidation resistance and limited ductility above a temperature range of 1100-1300°C. The major shortcomings of MoSi2 for structural applications are its poor room temperature fracture toughness and low high temperature strength. Sustained efforts including reinforcing MoSi2 with ceramic reinforcements, alloying and in-situ processing, have been made to improve these properties. The purity of grain boundaries and interfaces, which in turn depends on the processing method plays a significant role in the high temperature properties and this paper aims to show that.Intimately mixed Mo and Si powders (Mo:Si = 63:37 by weight fraction) were reaction hot pressed (“RHP“) in vacuum at 1500°C for 1 h, using a pressure of 26 MPa. During the hot pressing process, Mo and Si reacted to form MoSi2.


Author(s):  
C. Koehler ◽  
G. Thomas

The usefulness of silicon nitride as a high temperature ceramic can be limited by the presence of amorphous phases at the grain boundaries. Dense silicon nitride ceramics are produced using pressureless sintering of Si3N4 with Y-Si-Al-O-N additives. When these additives are left as a glassy phase at the grain boundaries and triple grain junctions, the mechanical properties at elevated temperatures are weakened due to these low viscous glasses. Post-sintering heat treatments and close compositional control can be effective in transforming the glass into crystalline phases at the grain boundaries thereby increasing the refractoriness.To optimize high temperature mechanical properties, processing must be controlled not only to fully crystallize the grain boundaries but also to avoid certain unstable secondary phases whose oxidation leads to large molar volume changes which causes possible cracking. Transmisssion electron microscopy and x-ray microanalysis (EDS) are significant methods to characterize the amorphous grain boundary pockets and to identify the crystalline grain boundary phases.


1997 ◽  
Vol 3 (S2) ◽  
pp. 731-732
Author(s):  
L. Fu ◽  
M. J. Hoffmann ◽  
X. Pan

Si3N4-based materials exhibit attractive mechanical properties for high-temperature applications. These properties are influenced strongly by the size and morphology of the grain boundaries and grain-boundary phase. An amorphous intergranular film (IGF) commonly exists at two grain junctions. The thickness of these IGFs sensitively depend on the chemical composition of the intergranular phase.In this work, our studies on the grain boundary microstructure of Si3N44 ceramics made by Hot Isostatically Pressing (HIPing).Si3N44 materials were densified by HIPing Si3N4 powders (UBE E-10) at 1950°C at 200 MPa for 1 hour, with sintering aids of either Y2O3 or Y2O3 + A12O3. Two materials were made: material A consisting of 2 wt% Y2O3; material B consisting of 5 wt% Y2O3 and 1 wt% A12O3. Both as-HIPed and oxided samples were investigated. TEM specimens were prepared by conventional procedures. The microstructure and chemical composition were studied on a JEOL 2000FX.


Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.


Author(s):  
G.A. Botton ◽  
C.J. Humphreys

Transition metal aluminides are of great potential interest for high temperature structural applications. Although these materials exhibit good mechanical properties at high temperature, their use in industrial applications is often limited by their intrinsic room temperature brittleness. Whilst this particular yield behaviour is directly related to the defect structure, the properties of the defects (in particular the mobility of dislocations and the slip system on which these dislocations move) are ultimately determined by the electronic structure and bonding in these materials. The lack of ductility has been attributed, at least in part, to the mixed bonding character (metallic and covalent) as inferred from ab-initio calculations. In this work, we analyse energy loss spectra and discuss the features of the near edge structure in terms of the relevant electronic states in order to compare the predictions on bonding directly with spectroscopic experiments. In this process, we compare spectra of late transition metal (TM) to early TM aluminides (FeAl and TiAl) to assess whether differences in bonding can also be detected. This information is then discussed in terms of bonding changes at grain boundaries in NiAl.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Alloy Digest ◽  
1974 ◽  
Vol 23 (5) ◽  

Abstract WC-3015 is a columbium-base alloy developed for structural applications in high-temperature oxidizing environments. It is characterized by good oxidation resistance, good mechanical properties and compatibility with silicide coatings. Cold-rolled sheet can be joined and welded without cracking. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-21. Producer or source: Wah Chang, a Teledyne Corporation.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 384
Author(s):  
Andong Du ◽  
Anders E. W. Jarfors ◽  
Jinchuan Zheng ◽  
Kaikun Wang ◽  
Gegang Yu

The effect of lanthanum (La)+cerium (Ce) addition on the high-temperature strength of an aluminum (Al)–silicon (Si)–copper (Cu)–magnesium (Mg)–iron (Fe)–manganese (Mn) alloy was investigated. A great number of plate-like intermetallics, Al11(Ce, La)3- and blocky α-Al15(Fe, Mn)3Si2-precipitates, were observed. The results showed that the high-temperature mechanical properties depended strongly on the amount and morphology of the intermetallic phases formed. The precipitated tiny Al11(Ce, La)3 and α-Al15(Fe, Mn)3Si2 both contributed to the high-temperature mechanical properties, especially at 300 °C and 400 °C. The formation of coarse plate-like Al11(Ce, La)3, at the highest (Ce-La) additions, reduced the mechanical properties at (≤300) ℃ and improved the properties at 400 ℃. Analysis of the strengthening mechanisms revealed that the load-bearing mechanism was the main contributing mechanism with no contribution from thermal-expansion mismatch effects. Strain hardening had a minor contribution to the tensile strength at high-temperature.


Sign in / Sign up

Export Citation Format

Share Document