Glacial landscape configuration influences channel response to flooding

Author(s):  
David A. Reid ◽  
Marwan A. Hassan ◽  
Richard McCleary
Author(s):  
Anderson R. Avila ◽  
Jahangir Alam ◽  
Douglas O’Shaughnessy ◽  
Tiago H. Falk

PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e29373 ◽  
Author(s):  
Maria Triviño ◽  
Wilfried Thuiller ◽  
Mar Cabeza ◽  
Thomas Hickler ◽  
Miguel B. Araújo

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1714
Author(s):  
Mohamed Marey ◽  
Hala Mostafa

In this work, we propose a general framework to design a signal classification algorithm over time selective channels for wireless communications applications. We derive an upper bound on the maximum number of observation samples over which the channel response is an essential invariant. The proposed framework relies on dividing the received signal into blocks, and each of them has a length less than the mentioned bound. Then, these blocks are fed into a number of classifiers in a parallel fashion. A final decision is made through a well-designed combiner and detector. As a case study, we employ the proposed framework on a space-time block-code classification problem by developing two combiners and detectors. Monte Carlo simulations show that the proposed framework is capable of achieving excellent classification performance over time selective channels compared to the conventional algorithms.


Author(s):  
Matthew J. Cashman ◽  
Allen Gellis ◽  
Eric Boyd ◽  
Mathias Collins ◽  
Scott Anderson ◽  
...  

2019 ◽  
Vol 219 ◽  
pp. 08003
Author(s):  
Maja Verstraeten

The SoLid Collaboration is currently operating a 1.6 ton neutrino detector near the Belgian BR2 reactor. Its main goal is the observation of the oscillation of electron antineutrinos to previously undetected flavour states. The highly segmented SoLid detector employs a compound scintillation technology based on PVT scintillator in combination with LiF-ZnS(Ag) screens containing the 6Li isotope. The experiment has demonstrated a channel-to-channel response that can be controlled to the level of a few percent, an energy resolution of better than 14% at 1 MeV, and a determination of the interaction vertex with a precision of 5 cm. This contribution highlights the major outcomes of the R&D program, the quality control during component manufacture and integration, the current performance and stability of the full-scale system, as well as the in-situ calibration of the detector with various radioactive sources.


Geophysics ◽  
1981 ◽  
Vol 46 (9) ◽  
pp. 1278-1290 ◽  
Author(s):  
L. E. Reed

In June 1974, a diamond drill operated for Selco Mining Corp. intersected zinc‐copper sulfides in Brouillan Township in northwestern Québec. To date, two bodies have been outlined. These bodies were discovered during a ground follow‐up of a Mark VI Input® electromagnetic (EM) survey. The Input survey covered an area selected on the basis of regional geology and local outcrops of acid volcanic rocks. Conductors were identified that appeared to be associated with potentially favorable geology. They were selected for ground follow‐up. One was the discovery zone. The airborne responses over the zone were less encouraging than those often observed over highly conductive massive sulfides. The low apparent conductivity‐thickness (5 mhos) was suggestive of conductive overburden. However, the character of the profiles suggested a bedrock source. Ground geophysical confirmation identified a drill target. Subsequent to the discovery, more intensive geophysical surveys, both ground and airborne, were carried out. The best EM response suggested a confined source within a much larger mineralized halo. Weaker ground EM response from the halo correlated with the early channel response of the Input system. An airborne EM survey conducted in 1958 over the same area identified both conductive zones. However, they were not followed up. Only with later advances in exploration philosophy, geologic appreciation, and instrumentation were the conductive zones recognized as viable exploration targets.


2016 ◽  
Vol 198 ◽  
pp. 84-92 ◽  
Author(s):  
Víctor Arroyo-Rodríguez ◽  
Carolina Rojas ◽  
Romeo A. Saldaña-Vázquez ◽  
Kathryn E. Stoner

Sign in / Sign up

Export Citation Format

Share Document