scholarly journals Controls of land surface and bedrock topography on the spatial distributions of water table and storage: unifying saturation excess runoff models

2021 ◽  
Author(s):  
Lili Yao ◽  
Dingbao Wang
2016 ◽  
Vol 20 (8) ◽  
pp. 3099-3108 ◽  
Author(s):  
Tuvia Turkeltaub ◽  
Daniel Kurtzman ◽  
Ofer Dahan

Abstract. Nitrate is considered the most common non-point pollutant in groundwater. It is often attributed to agricultural management, when excess application of nitrogen fertilizer leaches below the root zone and is eventually transported as nitrate through the unsaturated zone to the water table. A lag time of years to decades between processes occurring in the root zone and their final imprint on groundwater quality prevents proper decision-making on land use and groundwater-resource management. This study implemented the vadose-zone monitoring system (VMS) under a commercial crop field. Data obtained by the VMS for 6 years allowed, for the first time known to us, a unique detailed tracking of water percolation and nitrate migration from the surface through the entire vadose zone to the water table at 18.5 m depth. A nitrate concentration time series, which varied with time and depth, revealed – in real time – a major pulse of nitrate mass propagating down through the vadose zone from the root zone toward the water table. Analysis of stable nitrate isotopes indicated that manure is the prevalent source of nitrate in the deep vadose zone and that nitrogen transformation processes have little effect on nitrate isotopic signature. The total nitrogen mass calculations emphasized the nitrate mass migration towards the water table. Furthermore, the simulated pore-water velocity through analytical solution of the convection–dispersion equation shows that nitrate migration time from land surface to groundwater is relatively rapid, approximately 5.9 years. Ultimately, agricultural land uses, which are constrained to high nitrogen application rates and coarse soil texture, are prone to inducing substantial nitrate leaching.


2003 ◽  
Vol 28 ◽  
Author(s):  
Barendra Purkait

The Ganga-Brahmaputra river system together forms one of the largest deltas in the world comprising some 59570 sq km. The waterpower resources of the Brahmaputra have been presumed to be the fourth biggest in the world being 19.83 x 103 m3s1. The entire lower portion of the Brahmaputra consists of a vast network of distributary channels, which are dry in the cold season but are inundated during monsoon. The catchment area of the entire river is about 580,000 sq km, out of which 195,000 sq km lies in India. The maximum discharge as measured at Pandu in 1962 was of the order of 72800 m3 s-1 while the minimum was 1750 m3 s-1 in 1968. The drainage pattern in the valley is of antecedent type while the yazoo drainage pattern is most significant over the composite flood plain to the south of the Brahmaputra. The Brahmaputra valley is covered by Recent alluvium throughout its stretch except a few isolated sedimentary hills in the upper Assam, inselbergs/bornhardt of gneissic hills in the Darrang, Kamrup and Goalpara districts and a few inlying patches of Older Alluvium in the Darrang and Goalpara districts. The basin is very unstable. The present configuration of the basin is the result of uplift and subsidence of the Precambrian crystalline landmasses. Four geotectonic provinces can be delineated in the N-E India through which the Brahmaputra flows. These are bounded by major tectonic lineaments such as the basement E-W trending Dauki fault, a NE-SW trending structural feature of imbricate thrusts known as 'belt of Schuppen' and the NW-SE trending Mishmi thrust. Hydrogeologically, the Brahmaputra basin can be divided into two distinct categories, viz(a) dissected alluvial plain and (b) the inselberg zone. The first category is rep resented in the flood plain extending from the south of Sub-Himalayan piedmont fan zone in the north to right upto the main rock promontory of Garo Hills and Shillong Plateau. The inselberg zone is characterized by fractured, jointed and weathered ancient crystalline rocks with interhill narrow valley plains, consisting of thin to occasionally thick piles of assorted sediments. From the subsurface lithological data, two broad groups of aquifers are identified. These are i) shallow water table and ii) deeper water table or confined ones, separated by a system of aquicludes. The shallow aquifer materials, in general, consist of white to greyish white, fine grained micaceous sand and the thickness ranges from 1.2 to 10.3 m. The sand and clay ratio varies from 1: 2.5 to 1:26. The bedrock occurs at depth ranges of 30.4 to 39.5 m. The materials of the deeper aquifers comprise grey to greyish white, fine to medium grained sand. The sand and clay ratio varies from 1:2 to 1:7. The effective size of the aquifer materials varies from 0.125 to 0.062 mm with uniformity co-efficient around 4.00, porosity 38 to 42%, co-efficient of permeability 304 to 390 galls per day/0.3m2. The ground water is mildly alkaline with pH value 6.5 to 8.5, chloride 10 to 40 ppm, bi-carbonate 50 to 350 ppm, iron content ranges from a fraction of a ppm to 50 ppm. Total dissolved solids are low, hardness as CaCo3 50 to 300 ppm, specific conductance at 25 °C 150 to 650 mhos/cm. The yield from shallow aquifers is 1440 litres to 33750 litres/hour and for deeper aquifers ~ 1700 litres/hour at a drawdown of 13.41 m, specific capacity 21 litres/minute. The temperatures of ground water are 23°-25° C during winter, 24°-26° C during pre-monsoon and 27°- 28° C during peak monsoon. The general hydraulic gradient in the north bank is 1:800 whereas in the south bank it is 1: 300-400 The Tertiary sediments yield a range of water from 200 to 300 l.p.m whereas the yield from the Older Alluvium is 500 to 700 1.p.m. The estimated transmissibility and co-efficient of storage is of the order of ~ 800 1.p.m/ m and 8.2 x 10-3 respectively. Depths to water levels range from 5.3 to 10m below land surface (b.l.s). In the Younger or Newer Alluvium, ground water occurs both under water table and confined conditions. Depths to water levels vary from ground level to 10 m b.l.s. Depth to water ranges from 6 m b.l.s. to 2 m above land surface. The yield of the deep tubewells ranges from 2 to 4 kl/minute for a drawdown of 3 m to 6 m. The transmissibility of the aquifers varies from 69 to 1600 l.p.m/m and the storage co-fficient is of the order of 3.52 x 10-2.


2019 ◽  
Author(s):  
Richard Coppell ◽  
Emanuel Gloor ◽  
Joseph Holden

Abstract. Peatlands are important carbon stores and Sphagnum moss represents a critical peatland genus contributing to carbon exchange and storage. However, gas fluxes in Sphagnum-dominated systems are poorly represented in Dynamic Global Vegetation Models (DGVMs) which simulate, via incorporation of Plant Functional Types (PFTs), biogeochemical and energy fluxes between vegetation, the land surface and the atmosphere. Mechanisms characterised by PFTs within DGVMs include photosynthesis, respiration and competition and, in more recent DGVMs, sub-daily gas-exchange processes regulated by leaf 10 stomata. However, Sphagnum, like all mosses, are non-vascular plants and do not exhibit stomatal regulation. In order to achieve a level of process detail consistent with existing vascular vegetation PFTs within DGVMs, this paper describes a new process-based non-vascular-PFT model that is implemented within the TRIFFID DGVM used by the JULES land surface model. The new PFT model was tested against extant published field and laboratory studies of peat assemblage-net primary productivity, assemblage-gross primary productivity, assemblage respiration, water-table position, incoming 15 photosynthetically active radiation, temperature, and canopy dark respiration. The PFT model’s parameters were roughly tuned and the PFT model easily produced curves of the correct shape for peat assemblage-net primary productivity against water-table position, incoming photosynthetically active radiation and temperature, suggesting that it replicates the internal productivity mechanism of Sphagnum for the first time. Minor modifications should also allow it to be used across a range of other bryophytes enabling this non-vascular PFT model to have enhanced functionality.


2016 ◽  
Vol 43 (18) ◽  
pp. 9653-9661 ◽  
Author(s):  
E. Bresciani ◽  
P. Goderniaux ◽  
O. Batelaan

2010 ◽  
Vol 181 (4) ◽  
pp. 327-335 ◽  
Author(s):  
Philippe Audra ◽  
Jean-Claude D’antoni-Nobecourt ◽  
Jean-Yves Bigot

Abstract Hypogenic caves develop by recharge from below, not directly influenced by seepage from the overlying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint often hiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Caraman, Vallon du Salut). Often, thermal influences only occur as point thermal infeeders into epigenic caves (Mescla, Estramar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese deposits. The Giant Phreatic Shafts locate along regional active faultlines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to −70 m. Such a hyperkarstification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (−392 in). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidic ores. Iron deposits as massive bodies (Lagnes) or onto microbial media (Iboussières, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppresses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sébastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, producing a 3D maze cave in a staircase pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop headward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base-level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplacement of minerals and hydrocarbons.


2020 ◽  
Author(s):  
Norman Steinert ◽  
Fidel González-Rouco ◽  
Stefan Hagemann ◽  
Philipp de Vrese ◽  
Elena García-Bustamante ◽  
...  

<p>The representation of the thermal and hydrological state in the land model component of Earth System Models is crucial to have a realistic simulation of subsurface processes and the coupling between the atmo-, lito- and biosphere. There is evidence suggesting an inaccurate simulation of subsurface thermodynamics in current-generation Earth System Models, which have Land Surface Models that are too shallow. In simulations with a bottom boundary too close to the surface, the energy propagation and spatio-temporal variability of subsurface temperatures are affected. This potentially restrains the simulation of land-air interactions and subsurface phenomena, e.g. energy/moisture balance and storage capacity, freeze/thaw cycles and permafrost evolution. We introduce modifications for a deeper soil into the JSBACH soil model component of the MPI-ESM for climate projections of the 21st century. Subsurface layers are added progressively to increase the bottom boundary depth from 10m to 1400m. This leads to near-surface cooling of the soil and encourages regional terrestrial energy uptake by one order of magnitude and more. <br>The depth-changes in the soil also have implications for the hydrological regime, in which the moisture between the surface and the bedrock is sensitive to variations in the thermal regime. Additionally, we compare two different global soil parameter datasets that have major implications for the vertical distribution and availability of soil moisture and its exchange with the land surface. The implementation of supercool water and water phase changes in the soil creates a coupling between the soil thermal and hydrological regimes. In both cases of bottom boundary and water depth changes, we explore the sensitivity of JSBACH from the perspective of changes in the soil thermodynamics, energy balance and storage, as well as the effect of including freezing and thawing processes and their influence on the simulation of permafrost areas in the Northern Hemisphere high latitudes. The latter is of particular interest due to their vulnerability to long-term climate change.</p>


2016 ◽  
Vol 17 (3) ◽  
pp. 725-744 ◽  
Author(s):  
Kurt C. Solander ◽  
John T. Reager ◽  
Brian F. Thomas ◽  
Cédric H. David ◽  
James S. Famiglietti

Abstract The widespread influence of reservoirs on global rivers makes representations of reservoir outflow and storage essential components of large-scale hydrology and climate simulations across the land surface and atmosphere. Yet, reservoirs have yet to be commonly integrated into earth system models. This deficiency influences model processes such as evaporation and runoff, which are critical for accurate simulations of the coupled climate system. This study describes the development of a generalized reservoir model capable of reproducing realistic reservoir behavior for future integration in a global land surface model (LSM). Equations of increasing complexity relating reservoir inflow, outflow, and storage were tested for 14 California reservoirs that span a range of spatial and climate regimes. Temperature was employed in model equations to modulate seasonal changes in reservoir management behavior and to allow for the evolution of management seasonality as future climate varies. Optimized parameter values for the best-performing model were generalized based on the ratio of winter inflow to storage capacity so a future LSM user can generate reservoirs in any grid location by specifying the given storage capacity. Model performance statistics show good agreement between observed and simulated reservoir storage and outflow for both calibration (mean normalized RMSE = 0.48; mean coefficient of determination = 0.53) and validation reservoirs (mean normalized RMSE = 0.15; mean coefficient of determination = 0.67). The low complexity of model equations that include climate-adaptive operation features combined with robust model performance show promise for simulations of reservoir impacts on hydrology and climate within an LSM.


2005 ◽  
Vol 6 (3) ◽  
pp. 233-247 ◽  
Author(s):  
Reed M. Maxwell ◽  
Norman L. Miller

Abstract Traditional land surface models (LSMs) used for numerical weather simulation, climate projection, and as inputs to water management decision support systems, do not treat the LSM lower boundary in a fully process-based fashion. LSMs have evolved from a leaky-bucket approximation to more sophisticated land surface water and energy budget models that typically have a specified bottom layer flux to depict the lowest model layer exchange with deeper aquifers. The LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, groundwater models (GWMs) for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow, and root-zone uptake. In the present study, a state-of-the-art LSM (Common Land Model) and a variably saturated GWM (ParFlow) have been coupled as a single-column model. A set of simulations based on synthetic data and data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS), version 2(d), 18-yr dataset from Valdai, Russia, demonstrate the temporal dynamics of this coupled modeling system. The soil moisture and water table depth simulated by the coupled model agree well with the Valdai observations. Differences in prediction between the coupled and uncoupled models demonstrate the effect of a dynamic water table on simulated watershed flow. Comparison of the coupled model predictions with observations indicates certain cold processes such as frozen soil and freeze/thaw processes have an important impact on predicted water table depth. Comparisons of soil moisture, latent heat, sensible heat, temperature, runoff, and predicted groundwater depth between the uncoupled and coupled models demonstrate the need for improved groundwater representation in land surface schemes.


2014 ◽  
Vol 11 (5) ◽  
pp. 4753-4808 ◽  
Author(s):  
C. Velluet ◽  
J. Demarty ◽  
B. Cappelaere ◽  
I. Braud ◽  
H. B.-A. Issoufou ◽  
...  

Abstract. In the African Sahel, energy and water cycling at the land surface is pivotal for regional climate, water resources and land productivity, yet it is still extremely poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt, rainfed millet crop and fallow bush. These estimates build on the combination of a 7 year field dataset from two typical plots in southwestern Niger with detailed physically-based soil-plant-atmosphere modelling, yielding a continuous, comprehensive set of water and energy flux and storage variables over the 7 year period. In this study case in particular, blending field data with mechanistic modelling is considered as making best use of available data and knowledge for such purpose. It extends observations by reconstructing missing data and extrapolating to unobserved variables or periods. Furthermore, model constraining with observations compromises between extraction of observational information content and integration of process understanding, hence accounting for data imprecision and departure from physical laws. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to subseasonal scales from the 7 year series produced. Similarities and differences in the two ecosystems behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82–85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40–60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. The model developed in this context has the potential for reliable simulations outside the reported conditions, including changing climate and land cover.


Sign in / Sign up

Export Citation Format

Share Document