scholarly journals Development of a Coupled Land Surface and Groundwater Model

2005 ◽  
Vol 6 (3) ◽  
pp. 233-247 ◽  
Author(s):  
Reed M. Maxwell ◽  
Norman L. Miller

Abstract Traditional land surface models (LSMs) used for numerical weather simulation, climate projection, and as inputs to water management decision support systems, do not treat the LSM lower boundary in a fully process-based fashion. LSMs have evolved from a leaky-bucket approximation to more sophisticated land surface water and energy budget models that typically have a specified bottom layer flux to depict the lowest model layer exchange with deeper aquifers. The LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, groundwater models (GWMs) for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow, and root-zone uptake. In the present study, a state-of-the-art LSM (Common Land Model) and a variably saturated GWM (ParFlow) have been coupled as a single-column model. A set of simulations based on synthetic data and data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS), version 2(d), 18-yr dataset from Valdai, Russia, demonstrate the temporal dynamics of this coupled modeling system. The soil moisture and water table depth simulated by the coupled model agree well with the Valdai observations. Differences in prediction between the coupled and uncoupled models demonstrate the effect of a dynamic water table on simulated watershed flow. Comparison of the coupled model predictions with observations indicates certain cold processes such as frozen soil and freeze/thaw processes have an important impact on predicted water table depth. Comparisons of soil moisture, latent heat, sensible heat, temperature, runoff, and predicted groundwater depth between the uncoupled and coupled models demonstrate the need for improved groundwater representation in land surface schemes.

2011 ◽  
Vol 15 (3) ◽  
pp. 787-806 ◽  
Author(s):  
M. E. Soylu ◽  
E. Istanbulluoglu ◽  
J. D. Lenters ◽  
T. Wang

Abstract. Interactions between shallow groundwater and land surface processes play an important role in the ecohydrology of riparian zones. Some recent land surface models (LSMs) incorporate groundwater-land surface interactions using parameterizations at varying levels of detail. In this paper, we examine the sensitivity of land surface evapotranspiration (ET) to water table depth, soil texture, and two commonly used soil hydraulic parameter datasets using four models with varying levels of complexity. The selected models are Hydrus-1D, which solves the pressure-based Richards equation, the Integrated Biosphere Simulator (IBIS), which simulates interactions among multiple soil layers using a (water-content) variant of the Richards equation, and two forms of a steady-state capillary flux model coupled with a single-bucket soil moisture model. These models are first evaluated using field observations of climate, soil moisture, and groundwater levels at a semi-arid site in south-central Nebraska, USA. All four models are found to compare reasonably well with observations, particularly when the effects of groundwater are included. We then examine the sensitivity of modelled ET to water table depth for various model formulations, node spacings, and soil textures (using soil hydraulic parameter values from two different sources, namely Rawls and Clapp-Hornberger). The results indicate a strong influence of soil texture and water table depth on groundwater contributions to ET. Furthermore, differences in texture-specific, class-averaged soil parameters obtained from the two literature sources lead to large differences in the simulated depth and thickness of the "critical zone" (i.e., the zone within which variations in water table depth strongly impact surface ET). Depending on the depth-to-groundwater, this can also lead to large discrepancies in simulated ET (in some cases by more than a factor of two). When the Clapp-Hornberger soil parameter dataset is used, the critical zone becomes significantly deeper, and surface ET rates become much higher, resulting in a stronger influence of deep groundwater on the land surface energy and water balance. In general, we find that the simulated sensitivity of ET to the choice of soil hydraulic parameter dataset is greater than the sensitivity to soil texture defined within each dataset, or even to the choice of model formulation. Thus, our findings underscore the need for future modelling and field-based studies to improve the predictability of groundwater-land surface interactions in numerical models, particularly as it relates to the parameterization of soil hydraulic properties.


2020 ◽  
Vol 12 (18) ◽  
pp. 2936
Author(s):  
Iuliia Burdun ◽  
Michel Bechtold ◽  
Valentina Sagris ◽  
Annalea Lohila ◽  
Elyn Humphreys ◽  
...  

The OPtical TRApezoid Model (OPTRAM) is a physically-based approach for remote soil moisture estimation. OPTRAM is based on the response of short-wave infrared (SWIR) reflectance to vegetation water status, which in turn responds to changes of root-zone soil moisture. In peatlands, the latter is tightly coupled to water table depth (WTD). Therefore, in theory, the OPTRAM index might be a useful tool to monitor WTD dynamics in peatlands, although the sensitivity of OPTRAM index to WTD changes will likely depend on vegetation cover and related rooting depth. In this study, we aim at identifying those locations (further called ‘best pixels’) where the OPTRAM index is most representative of overall peatland WTD dynamics. In peatlands, the high saturated hydraulic conductivity of the upper layer largely synchronizes the temporal WTD fluctuations over several kilometers, i.e., even though the mean and amplitude of the WTD dynamics may vary in space. Therefore, it can be assumed that the WTD time series, either measured at a single location or simulated for a grid cell with the PEATland-specific adaptation of the NASA Catchment Land Surface Model (PEATCLSM), are representative of the overall peatland WTD dynamics. We took advantage of this concept to identify the ‘best pixel’ of all spatially distributed OPTRAM pixels within a peatland, as that pixel with the highest time series Pearson correlation (R) with WTD data accounting for temporal autocorrelation. The OPTRAM index was calculated based on various remotely sensed images, namely, Landsat, MODIS, and aggregated Landsat images at MODIS resolution for five northern peatlands with long-term WTD records, including both bogs and fens. The ‘best pixels’ were dominantly covered with mosses and graminoids with little or no shrub or trees. However, the performance of OPTRAM highly depended on the spatial resolution of the remotely sensed data. The Landsat-based OPTRAM index yielded the highest R values (mean of 0.7 across the ‘best pixels’ in five peatlands). Our study further indicates that, in the absence of historical in situ data, PEATCLSM can be used as an alternative to localize ‘best pixels’. This finding enables the future applicability of OPTRAM to monitor WTD changes in peatlands on a global scale.


2017 ◽  
Vol 18 (5) ◽  
pp. 1471-1488 ◽  
Author(s):  
James M. Gilbert ◽  
Reed M. Maxwell ◽  
David J. Gochis

Abstract The boundary layer, land surface, and subsurface are important coevolving components of hydrologic systems. While previous studies have examined the connections between soil moisture, groundwater, and the atmosphere, the atmospheric response to regional water-table drawdown has received less attention. To address this question, a coupled hydrologic–atmospheric model [Parallel Flow hydrologic model (ParFlow) and WRF] was used to simulate the San Joaquin River watershed of central California. This study focuses specifically on the planetary boundary layer (PBL) in simulations with two imposed water-table configurations: a high water table mimicking natural conditions and a lowered water table reflecting historic groundwater extraction in California’s Central Valley, although effect of irrigation was not simulated. An ensemble of simulations including three boundary layer schemes and six initial conditions was performed for both water-table conditions to assess conceptual and initial condition uncertainty. Results show that increased regional water-table depth is associated with a significant increase in peak PBL height for both initial condition and boundary layer scheme conditions, although the choice of scheme interacts to affect the magnitude of peak PBL height change. Analysis of simulated land surface fluxes shows the change in PBL height can be attributed to decreasing midday evaporative fraction under lowered water-table conditions. Furthermore, the sensitivity of PBL height to changes in water-table depth appears to depend on local water-table variation within 10 m of the land surface and the regional average water-table depth. Finally, soil moisture changes associated with lowered water tables are linked to changes in PBL circulation as indicated by vertical winds and turbulence kinetic energy.


2004 ◽  
Vol 5 (6) ◽  
pp. 1131-1146 ◽  
Author(s):  
H. Richter ◽  
A. W. Western ◽  
F. H. S. Chiew

Abstract Numerical Weather Prediction (NWP) and climate models are sensitive to evapotranspiration at the land surface. This sensitivity requires the prediction of realistic surface moisture and heat fluxes by land surface models that provide the lower boundary condition for the atmospheric models. This paper compares simulations of a stand-alone version of the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface scheme, or the Viterbo and Beljaars scheme (VB95), with various soil and vegetation parameter sets against soil moisture observations across the Murrumbidgee River catchment in southeast Australia. The study is, in part, motivated by the adoption of VB95 as the operational land surface scheme by the Australian Bureau of Meteorology in 1999. VB95 can model the temporal fluctuations in soil moisture, and therefore the moisture fluxes, fairly realistically. The monthly model latent heat flux is also fairly insensitive to soil or vegetation parameters. The VB95 soil moisture is sensitive to the soil and, to a lesser degree, the vegetation parameters. The model exhibits a significant (generally wet) bias in the absolute soil moisture that varies spatially. The use of the best Australia-wide available soils and vegetation information did not improve VB95 simulations consistently, compared with the original model parameters. Comparisons of model and observed soil moistures revealed that more realistic soil parameters are needed to reduce the model soil moisture bias. Given currently available continent-wide soils parameters, any initialization of soil moisture with observed values would likely result in significant flux errors. The soil moisture bias could be largely eliminated by using soil parameters that were derived directly from the actual soil moisture observations. Such parameters, however, are only available at very few point locations.


2009 ◽  
Vol 6 (6) ◽  
pp. 6895-6928
Author(s):  
L. Wang ◽  
T. Koike ◽  
K. Yang ◽  
R. Jin ◽  
H. Li

Abstract. In this study, a frozen soil parameterization has been modified and incorporated into a distributed biosphere hydrological model (WEB-DHM). The WEB-DHM with the frozen scheme was then rigorously evaluated in a small cold area, the Binngou watershed, against the in-situ observations from the WATER (Watershed Allied Telemetry Experimental Research). In the summer 2008, land surface parameters were optimized using the observed surface radiation fluxes and the soil temperature profile at the Dadongshu-Yakou (DY) station in July; and then soil hydraulic parameters were obtained by the calibration of the July soil moisture profile at the DY station and by the calibration of the discharges at the basin outlet in July and August that covers the annual largest flood peak of 2008. The calibrated WEB-DHM with the frozen scheme was then used for a yearlong simulation from 21 November 2007 to 20 November 2008, to check its performance in cold seasons. Results showed that the WEB-DHM with the frozen scheme has given much better performance than the WEB-DHM without the frozen scheme, in the simulations of soil moisture profile at the DY station and the discharges at the basin outlet in the yearlong simulation.


2011 ◽  
Vol 12 (6) ◽  
pp. 1299-1320 ◽  
Author(s):  
Ben Livneh ◽  
Pedro J. Restrepo ◽  
Dennis P. Lettenmaier

Abstract A unified land model (ULM) is described that combines the surface flux parameterizations in the Noah land surface model (used in most of NOAA’s coupled weather and climate models) with the Sacramento Soil Moisture Accounting model (Sac; used for hydrologic prediction within the National Weather Service). The motivation was to develop a model that has a history of strong hydrologic performance while having the ability to be run in the coupled land–atmosphere environment. ULM takes the vegetation, snow model, frozen soil, and evapotranspiration schemes from Noah and merges them with the soil moisture accounting scheme from Sac. ULM surface fluxes, soil moisture, and streamflow simulations were evaluated through comparisons with observations from the Ameriflux (surface flux), Illinois Climate Network (soil moisture), and Model Parameter Estimation Experiment (MOPEX; streamflow) datasets. Initially, a priori parameters from Sac and Noah were used, which resulted in ULM surface flux simulations that were comparable to those produced by Noah (Sac does not predict surface energy fluxes). ULM with the a priori parameters had streamflow simulation skill that was generally similar to Sac’s, although it was slightly better (worse) for wetter (more arid) basins. ULM model performance using a set of parameters identified via a Monte Carlo search procedure lead to substantial improvements relative to the a priori parameters. A scheme for transfer of parameters from streamflow simulations to nearby flux and soil moisture measurement points was also evaluated; this approach did not yield conclusive improvements relative to the a priori parameters.


2020 ◽  
Author(s):  
Leila farhadi ◽  
Abedeh Abdolghafoorian

<p>Evapotranspiration (ET) is a key component of terrestrial water cycle that plays an important role in the Earth system. Aaccurate estimation of ET is crucial in various hydrological, meteorological, and agricultural applications. In situ measurements of ET are costly and cannot be readily scaled to regional scales relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of ET using land surface state observations that are widely available from remote sensing across a range of spatial scales.</p><p>In this work, A variational data (VDA) assimilation framework is developed to estimate ET by assimilating Soil Moisture Active Passive (SMAP) soil moisture and Geostationary Operational Environmental Satellite (GOES) land surface temperature data into a coupled dual-source energy and water balance model.</p><p>The VDA framework estimates the key parameters of the coupled model, which regulate the partitioning of available energy (i.e., neutral bulk heat transfer coefficient (CH<sub>N</sub>) and evaporative fraction from soil (EF<sub>S</sub>) and canopy (EF<sub>C</sub>)). The uncertainties of the retrieved unknown parameters are estimated through the inverse of Hessian of cost function, obtained using the Lagrangian methodology. Analysis of the second-order information provides a tool to identify the optimum parameter estimates and guides towards a well-posed estimation problem.</p><p>The VDA framework is implemented over an area of 21780 km<sup>2</sup> in the U.S. Southern Great Plains (with computational grid size of 0.05 degree) during a nine-month period. The maps of retrieved evaporation and transpiration are used to study a number of dynamic feedback mechanisms between the land and atmosphere, such as the dependence of evapotranspiration on vegetation and soil moisture.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 602 ◽  
Author(s):  
Yang ◽  
Wang ◽  
Huang

The warming climate significantly modifies the global water cycle. Global evapotranspiration has increased over the past decades, yet climate models agree on the drying trend of land surface. In this study, we conducted an intercomparison analysis of the surface energy partitioning across Coupled Model Intercomparison Phase 5 (CMIP5) simulations and evaluated its behaviour with surface temperature and soil moisture anomalies, against the theoretically derived thermodynamic formula. Different responses over land and sea surfaces to elevated greenhouse gas emissions were found. Under the Representative Concentration Pathway of +8.5 W m−2 (RCP8.5) warming scenario, the multi-model mean relative efficiency anomaly from CMIP5 simulations is 3.83 and −0.12 over global sea and land, respectively. The significant anomaly over sea was captured by the thermodynamic solution based on the principle of maximum entropy production, with a mean relative error of 14.6%. The declining trend over land was also reproduced, but an accurate prediction of its small anomaly will require the inclusions of complex physical processes in future work. Despite increased potential evapotranspiration under rising temperatures, both CMIP5 simulations and thermodynamic principles suggest that the soil moisture-temperature feedback cannot support long-term enhanced evapotranspiration at the global scale. The dissipation of radiative forcing eventually shifts towards sensible heat flux and accelerates the warming over land, especially over South America and Europe.


2019 ◽  
Vol 20 (5) ◽  
pp. 793-819 ◽  
Author(s):  
Joseph A. Santanello Jr. ◽  
Patricia Lawston ◽  
Sujay Kumar ◽  
Eli Dennis

Abstract The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture initialization approaches in coupled models remain quite diverse in terms of their complexity and observational roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA’s Land Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems. This includes a wide range of currently used initialization approaches, including soil moisture derived from “off the shelf” products such as atmospheric models and land data assimilation systems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP. Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case studies are analyzed using the local land–atmosphere coupling (LoCo) framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the critical role of inherent model background biases. In addition, simultaneous assessment of land versus atmospheric initial conditions in an integrated, process-level fashion can help address the question of whether improvements in traditional NWP verification statistics are achieved for the right reasons.


2018 ◽  
Vol 10 (12) ◽  
pp. 1978 ◽  
Author(s):  
Sheng Wang ◽  
Monica Garcia ◽  
Andreas Ibrom ◽  
Jakob Jakobsen ◽  
Christian Josef Köppl ◽  
...  

High resolution root-zone soil moisture (SM) maps are important for understanding the spatial variability of water availability in agriculture, ecosystems research and water resources management. Unmanned Aerial Systems (UAS) can flexibly monitor land surfaces with thermal and optical imagery at very high spatial resolution (meter level, VHR) for most weather conditions. We modified the temperature–vegetation triangle approach to transfer it from satellite to UAS remote sensing. To consider the effects of the limited coverage of UAS mapping, theoretical dry/wet edges were introduced. The new method was tested on a bioenergy willow short rotation coppice site during growing seasons of 2016 and 2017. We demonstrated that by incorporating surface roughness parameters from the structure-from-motion in the interpretation of the measured land surface-atmosphere temperature gradients, the estimates of SM significantly improved. The correlation coefficient between estimated and measured SM increased from not significant to 0.69 and the root mean square deviation decreased from 0.045 m3∙m−3 to 0.025 m3∙m−3 when considering temporal dynamics of surface roughness in the approach. The estimated SM correlated better with in-situ root-zone SM (15–30 cm) than with surface SM (0–5 cm) which is an important advantage over alternative remote sensing methods to estimate SM. The optimal spatial resolution of the triangle approach was found to be around 1.5 m, i.e. similar to the length scale of tree-crowns. This study highlights the importance of considering the 3-D fine scale canopy structure, when addressing the links between surface temperature and SM patterns via surface energy balances. Our methodology can be applied to operationally monitor VHR root-zone SM from UAS in agricultural and natural ecosystems.


Sign in / Sign up

Export Citation Format

Share Document