scholarly journals Convective mass-flux from long term radar reflectivities over Darwin, Australia

2021 ◽  
Author(s):  
Alessandro Carlo Maria Savazzi ◽  
Christian Jakob ◽  
Pier Siebesma
2009 ◽  
Vol 66 (3) ◽  
pp. 627-646 ◽  
Author(s):  
L. E. Ott ◽  
J. Bacmeister ◽  
S. Pawson ◽  
K. Pickering ◽  
G. Stenchikov ◽  
...  

Abstract Convection strongly influences the distribution of atmospheric trace gases. General circulation models (GCMs) use convective mass fluxes calculated by parameterizations to transport gases, but the results are difficult to compare with trace gas observations because of differences in scale. The high resolution of cloud-resolving models (CRMs) facilitates direct comparison with aircraft observations. Averaged over a sufficient area, CRM results yield a validated product directly comparable to output from a single global model grid column. This study presents comparisons of vertical profiles of convective mass flux and trace gas mixing ratios derived from CRM and single column model (SCM) simulations of storms observed during three field campaigns. In all three cases, SCM simulations underpredicted convective mass flux relative to CRM simulations. As a result, the SCM simulations produced lower trace gas mixing ratios in the upper troposphere in two of the three storms than did the CRM simulations. The impact of parameter sensitivity in the moist physics schemes employed in the SCM has also been examined. Statistical techniques identified the most significant parameters influencing convective transport. Convective mass fluxes are shown to be strongly dependent on chosen parameter values. Results show that altered parameter settings can substantially improve the comparison between SCM and CRM convective mass flux. Upper tropospheric trace gas mixing ratios were also improved in two storms. In the remaining storm, the SCM representation of CO2 was not improved because of differences in entrainment and detrainment levels in the CRM and SCM simulations.


2020 ◽  
Vol 77 (3) ◽  
pp. 981-1000
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun ◽  
Byeong-Gwon Song

Abstract Contributions of convective gravity waves (CGWs) and orographic gravity waves (OGWs) to the Brewer–Dobson circulation (BDC) are examined and compared to those from resolved waves. OGW drag (OGWD) is provided by NCEP Climate Forecast System Reanalysis (CFSR), while CGW drag (CGWD) is obtained from an offline calculation of a physically based CGW parameterization with convective heating and background data provided by CFSR. CGWD contributes to the shallow branch of the BDC regardless of the season, while OGWD contributes to both the shallow and deep branches except for the summertime, when OGWs hardly propagate into the stratosphere. At 70 hPa, the annual-mean tropical upward mass fluxes from Eliassen–Palm flux divergence (EPD), OGWD, and CGWD are 68%, 7%, and 4% of the total mass flux, respectively. The tropical upward mass flux at 70 hPa shows an increasing trend during the time period from 1979 to 1998, with 28%, 18%, and 6% of the trend driven by EPD, OGWD, and CGWD, respectively. The width of the turnaround latitudes tends to narrow for the streamfunctions induced by OGWD and CGWD but tends to widen for that induced by EPD. The contributions of GWD from MERRA (MERRA-2) to the climatology and long-term trend of the BDC are 7% (7%) and 13% (4%), respectively, somewhat smaller than the contributions of CGWD plus OGWD, which are estimated from CFSR to be 12% and 20%, respectively.


2019 ◽  
Vol 227 ◽  
pp. 103516 ◽  
Author(s):  
Alexander A. Haluska ◽  
Charles E. Schaefer ◽  
Jaehyun Cho ◽  
Graig M. Lavorgna ◽  
Michael D. Annable
Keyword(s):  

2020 ◽  
Vol 8 (24) ◽  
pp. 12089-12096 ◽  
Author(s):  
Wei Zhang ◽  
Xi Chen ◽  
Gong Zhang ◽  
Jianfei Li ◽  
Qinghua Ji ◽  
...  

Heat–mass decoupling enabled by anisotropy can simultaneously ensure rapid salt rejection and enhanced heat localization, achieving long-term efficient solar desalination.


2020 ◽  
Author(s):  
Marcus Klingebiel ◽  
Heike Konow ◽  
Bjorn Stevens

<p>Mass flux is a key parameter to represent shallow convection in global circulation models. To estimate the shallow convective mass flux as accurately as possible, observations of this parameter are necessary. Prior studies from Ghate et al. (2011) and Lamer et al. (2015) used Doppler radar measurements over a few months to identify a typical shallow convective mass flux profile based on cloud fraction and vertical velocity. In this study, we extend their observations by using long term remote sensing measurements at the Barbados Cloud Observatory (13° 09’ N, 59° 25’ W) over a time period of 30 months and check a hypothesis by Grant (2001), who proposed that the cloud base mass flux is just proportional to the sub-cloud convective velocity scale. Therefore, we analyze Doppler radar and Doppler lidar measurements to identify the variation of the vertical velocity in the cloud and sub-cloud layer, respectively. Furthermore, we show that the in-cloud mass flux is mainly influenced by the cloud fraction and provide a linear equation, which can be used to roughly calculate the mass flux in the trade wind region based on the cloud fraction.</p><p> </p><p>References:<br>Ghate,  V.  P.,  M.  A.  Miller,  and  L.  DiPretore,  2011:   Vertical  velocity structure of marine boundary layer trade wind cumulus clouds. Journal  of  Geophysical  Research: Atmospheres, 116  (D16), doi:10.1029/2010JD015344.</p><p>Grant,  A.  L.  M.,  2001:   Cloud-base  fluxes  in  the  cumulus-capped boundary layer. Quarterly Journal of the Royal Meteorological Society, 127 (572), 407–421, doi:10.1002/qj.49712757209.</p><p>Lamer, K., P. Kollias, and L. Nuijens, 2015:  Observations of the variability  of  shallow  trade  wind  cumulus  cloudiness  and  mass  flux. Journal of Geophysical Research: Atmospheres, 120  (12), 6161–6178, doi:10.1002/2014JD022950.</p>


2013 ◽  
Vol 26 (11) ◽  
pp. 3803-3822 ◽  
Author(s):  
Robin Chadwick ◽  
Ian Boutle ◽  
Gill Martin

Abstract Changes in the patterns of tropical precipitation (P) and circulation are analyzed in Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs under the representative concentration pathway 8.5 (RCP8.5) scenario. A robust weakening of the tropical circulation is seen across models, associated with a divergence feedback that acts to reduce convection most in areas of largest climatological ascent. This is in contrast to the convergence feedback seen in interannual variability of tropical precipitation patterns. The residual pattern of convective mass-flux change is associated with shifts in convergence zones due to mechanisms such as SST gradient change, and this is often locally larger than the weakening due to the divergence feedback. A simple framework is constructed to separate precipitation change into components based on different mechanisms and to relate it directly to circulation change. While the tropical mean increase in precipitation is due to the residual between the positive thermodynamic change due to increased specific humidity and the decreased convective mass flux due to the weakening of the circulation, the spatial patterns of these two components largely cancel each other out. The rich-get-richer mechanism of greatest precipitation increases in ascent regions is almost negated by this cancellation, explaining why the spatial correlation between climatological P and the climate change anomaly ΔP is only 0.2 over the tropics for the CMIP5 multimodel mean. This leaves the spatial pattern of precipitation change to be dominated by the component associated with shifts in convergence zones, both in the multimodel mean and intermodel uncertainty, with the component due to relative humidity change also becoming important over land.


2020 ◽  
Vol 77 (5) ◽  
pp. 1559-1574 ◽  
Author(s):  
Raphaela Vogel ◽  
Sandrine Bony ◽  
Bjorn Stevens

Abstract This paper develops a method to estimate the shallow-convective mass flux M at the top of the subcloud layer as a residual of the subcloud-layer mass budget. The ability of the mass-budget estimate to reproduce the mass flux diagnosed directly from the cloud-core area fraction and vertical velocity is tested using real-case large-eddy simulations over the tropical Atlantic. We find that M reproduces well the magnitude, diurnal cycle, and day-to-day variability of the core-sampled mass flux, with an average root-mean-square error of less than 30% of the mean. The average M across the four winter days analyzed is 12 mm s−1, where the entrainment rate E contributes on average 14 mm s−1 and the large-scale vertical velocity W contributes −2 mm s−1. We find that day-to-day variations in M are mostly explained by variations in W, whereas E is very similar among the different days analyzed. Instead E exhibits a pronounced diurnal cycle, with a minimum of about 10 mm s−1 around sunset and a maximum of about 18 mm s−1 around sunrise. Application of the method to dropsonde data from an airborne field campaign in August 2016 yields the first measurements of the mass flux derived from the mass budget, and supports the result that the variability in M is mostly due to the variability in W. Our analyses thus suggest a strong coupling between the day-to-day variability in shallow convective mixing (as measured by M) and the large-scale circulation (as measured by W). Application of the method to the EUREC4A field campaign will help evaluate this coupling, and assess its implications for cloud-base cloudiness.


2019 ◽  
Vol 76 (5) ◽  
pp. 1289-1306 ◽  
Author(s):  
Ann Kristin Naumann ◽  
Bjorn Stevens ◽  
Cathy Hohenegger

Abstract A conceptual model is developed to analyze how radiative cooling and the effect of moisture and shallow convection modify the boundary layer (BL) structure and the strength of mesoscale shallow circulations. The moist BL allows for a convective mass flux to modify the BL mass balance, which enhances inversion entrainment compared to a dry case and acts as a moisture valve to the BL. The convective mass flux is found to be insensitive to the applied radiative cooling and in the absence of heterogeneities cloud-free conditions exist only for unusual large-scale forcings. The model is able to explain the moderate range of BL heights and humidities observed in the trades. In a two-column setup, differential radiative BL cooling causes a pressure difference, which drives a BL flow from the cold and moist column to the warm and dry column and couples them dynamically. The small inversion buoyancy jump of the moist BL yields a stronger BL flow of 4 m s−1 instead of 1 m s−1 in the dry case. For typical conditions of the subsidence-dominated tropical oceans, a radiatively driven shallow circulation is stronger than one driven by sea surface temperature (SST) gradients. While the strength of the SST-driven circulation decreases with decreasing SST difference, the radiatively driven circulation is insensitive to the radiative BL cooling difference. In both cases, convection is suppressed in the descending branch of the shallow circulation and enhanced in the ascending branch, resembling patterns of organized shallow convection.


Sign in / Sign up

Export Citation Format

Share Document