scholarly journals Vapour pressure deficit is the main driver of tree canopy conductance across biomes

2021 ◽  
Author(s):  
Victor Flo ◽  
Jordi Martínez-Vilalta ◽  
Víctor Granda ◽  
Maurizio Mencuccini ◽  
Rafael Poyatos
2021 ◽  
Author(s):  
Victor Flo ◽  
Jordi Martínez-Vilalta ◽  
Víctor Granda ◽  
Maurizio Mencuccini ◽  
Rafael Poyatos

1997 ◽  
Vol 45 (2) ◽  
pp. 211 ◽  
Author(s):  
G. A. Duff ◽  
B. A. Myers ◽  
R. J. Williams ◽  
D. Eamus ◽  
A. O'Grady ◽  
...  

The wet–dry tropics of northern Australia are characterised by extreme seasonal variation in rainfall and atmospheric vapour pressure deficit, although temperatures are relatively constant throughout the year.This seasonal variation is associated with marked changes in tree canopy cover, although the exact determinants of these changes are complex. This paper reports variation in microclimate (temperature, vapour pressure deficit (VPD)), rainfall, soil moisture, understorey light environment (total daily irradiance), and pre-dawn leaf water potential of eight dominant tree species in an area of savanna near Darwin, Northern Territory, Australia. Patterns of canopy cover are strongly influenced by both soil moisture and VPD. Increases in canopy cover coincide with decreases in VPD, and occur prior to increases in soil moisture that occur with the onset of wet season rains. Decreases in canopy cover coincide with decreases in soil moisture following the cessation of wet season rains and associated increases in VPD. Patterns of pre-dawn water potential vary significantly between species and between leaf phenological guilds. Pre-dawn water potential increases with decreasing VPD towards the end of the dry season prior to any increases in soil moisture. Decline in pre-dawn water potential coincides with both decreasing soil moisture and increasing VPD at the end of the dry season. This study emphasises the importance of the annual transition between the dry season and the wet season, a period of 1–2 months of relatively low VPD but little or no effective rainfall, preceded by a 4–6 month dry season of no rainfall and high VPD. This period is accompanied by markedly increased canopy cover, and significant increases in pre-dawn water potential, which are demonstrably independent of rainfall. This finding emphasises the importance of VPD as a determinant of physiological and phenological processes in Australian savannas.


Ecohydrology ◽  
2011 ◽  
Vol 4 (2) ◽  
pp. 168-182 ◽  
Author(s):  
Michael J. Aspinwall ◽  
John S. King ◽  
Jean-Christophe Domec ◽  
Steven E. McKeand ◽  
Fikret Isik

1998 ◽  
Vol 25 (3) ◽  
pp. 287 ◽  
Author(s):  
Saman P. Seneweera ◽  
Oula Ghannoum ◽  
Jann Conroy

The hypothesis that shoot growth responses of C4 grasses to elevated CO2 are dependent on shoot water relations was tested using a C4 grass, Panicum coloratum (NAD-ME subtype). Plants were grown for 35 days at CO2 concentrations of 350 or 1000 µL CO2 L-1. Shoot water relations were altered by growing plants in soil which was brought daily to 65, 80 or 100% field capacity (FC) and by maintaining the vapour pressure deficit (VPD) at 0.9 or 2.1 kPa. At 350 µL CO2 L-1, high VPD and lower soil water content depressed shoot dry mass, which declined in parallel at each VPD with decreasing soil water content. The growth depression at high VPD was associated with increased shoot transpiration, whereas at low soil water, leaf water potential was reduced. Elevated CO2 ameliorated the impact of both stresses by decreasing transpiration rates and raising leaf water potential. Consequently, high CO2 approximately doubled shoot mass and leaf length at a VPD of 2.1 kPa and soil water contents of 65 and 80% FC but had no effect on unstressed plants. Water use efficiency was enhanced by elevated CO2 under conditions of stress but this was primarily due to increases in shoot mass. High CO2 had a greater effect on leaf growth parameters than on stem mass. Elevated CO2 increased specific leaf area and leaf area ratio, the latter at high VPD only. We conclude that high CO2 increases shoot growth of C4 grasses by ameliorating the effects of stress induced by either high VPD or low soil moisture. Since these factors limit growth of field-grown C4 grasses, it is likely that their biomass will be enhanced by rising atmospheric CO2 concentrations.


2005 ◽  
Vol 48 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Marcelo Schramm Mielke ◽  
Alex-Alan Furtado de Almeida ◽  
Fábio Pinto Gomes

Measurements of leaf gas exchange at different photosynthetic photon flux density (PPFD) levels were conducted in order to compare the photosynthetic traits of five neotropical rainforest tree species, with a special emphasis on empirical mathematical models to estimate the light response curve parameters incorporating the effects of leaf-to-air vapour pressure deficit (D) on the saturated photosynthetic rate (Amax). All empirical mathematical models seemed to provide a good estimation of the light response parameters. Comparisons of the leaf photosynthetic traits between different species needed to select an appropriate model and indicated the microenvironmental conditions when the data were collected. When the vapour pressure deficit inside the chamber was not controlled, the incorporation of linear or exponencial functions that explained the effects of D on leaf gas exchange, was a very good method to enhance the performance of the models.


2019 ◽  
Vol 12 ◽  
pp. 01011
Author(s):  
H.R. Schultz

The predicted developments in climate are region-specific and adaptation can only be successful considering the regional characteristics with its diverse technical, environmental, economic and social implications. One of the key concerns for many regions is the availability of water through precipitation, the distribution of precipitation throughout the year, and possible changes in evaporative demand of the atmosphere and thus water use. From rising temperatures it is mostly assumed that water holding capacity of the atmosphere will increase in the future as a function of the Clausius-Clapeyron law, which predicts an increase in the saturation vapour pressure of the atmosphere of 6–7% per degree Celsius. As a consequence, a simultaneous increase in potential evapotranspiration (ETp, the amount of water that could potentially be evaporated from soils and transpired by plants due to changes in climatic factors such as temperature, vapour pressure deficit, radiation and wind speed) is assumed in many cases, which would alter soil and plant water relations. However, the same underlying principles also predict an increase in precipitation by 1–2% per degree warming. Additionally, model predictions for many regions forecast altered precipitation patterns and thus in combination with the possibility of increased ETp, farmers around the world fear an increase in the likelyhood of water deficit and a reduction in the availability of water for irrigation. Contrary to expectations, there have been reports on a reduction in evaporative demand worldwide despite increasing temperatures. In many cases this has been related to a decrease in solar radiation observed for many areas on earth including wine growing regions in Europe until the beginning of the 80th (global dimming) of the last century. However, since then, solar radiation has increased again, but ETp did not always follow and a worldwide decrease in wind speed and pan evaporation has been observed. In order to evaluate different grape growing regions with respect to observed changes on precipitation patterns and ETp, the data of seven wine-growing areas in five countries in the Northern and Southern hemisphere across a large climatic trans-sect were analyzed (Rheingau, Germany, Burgundy, Rhone Valley, France, Napa Valley, USA, Adelaide Hills, Tasmania, Australia, Marlborough, New Zealand) were analyzed. Precipitation patterns differed vastly between locations and showed very different trends over observation periods ranging from 23 to 60 years. The ETp has increased continuously in only two of the seven wine growing areas (Rheingau and Marlborough). In most other areas, ETp has been stable during winter and summer for at least 22 years (Rhone Valley, Napa Valley, Tasmania), sometimes much longer (45 years Adelaide Hills), and has been declining in Burgundy after a period of strong increase for the last 13 years. The potential underlying factors are discussed in relation to observed shifts in precipitation patterns.


Sign in / Sign up

Export Citation Format

Share Document