scholarly journals Controls of the Foreland Deformation Pattern in the Orogen-Foreland Shortening System: Constraints from High-Resolution Geodynamic Models

2022 ◽  
Author(s):  
Sibiao Liu ◽  
Stephan V. Sobolev ◽  
Andrey Y. Babeyko ◽  
Michaël Vincent Pons-Rallo
2021 ◽  
Author(s):  
Camilla Marino ◽  
Luigi Ferranti ◽  
Jacopo Natale ◽  
Marco Sacchi ◽  
Marco Anzidei

<p>Appraisal of morphodepositional markers tied to ancient sea-levels in high-resolution seismic profiles together with geo-archaeological markers along the coast of the Pozzuoli Bay provided insights into the vertical deformation of the submerged part of the Campi Flegrei caldera (Southern Italy).</p><p>The collapse of the central part of the Campi Flegrei caldera is associated with the eruption of the Neapolitan Yellow Tuff (NYT) at ~15 ka. The NYT caldera collapse was followed by central dome resurgence associated with alternations of fast uplift and subsidence displacements that accompanied with discrete phases of intra-caldera volcanic activity. Previously, the evolution of ground movement in the Campi Flegrei caldera has been reconstructed using marine deposits uplifted onland or archaeological evidence and historical accounts and thus offers a mainly 2D appraisal of the deformation pattern. However, a complete reconstruction of post-collapse deformation suffers of the limitation that nearly two-thirds of the caldera are submerged beneath the Pozzuoli Bay.</p><p>We contribute to fill this gap by providing a reconstruction of offshore and coastal deformation through estimation of the vertical displacement of morphodepositional markers in high-resolution seismic reflection profiles and geoarchaeological markers directly surveyed at shallow depths. Our interpretation reveals the occurrence of different sediment stacking pattern whose provides evidence of rapid and oscillating ground movements. Whereas the offshore morphodepositional markers provide displacement information for the last ~12 ka, for the last ~2 ka our interpretation is supported by ancient Roman sea-level indicators. The multi-dataset analysis has allowed disentangling the signal related to the post-caldera dynamics from a broader deformation signal that affects this part of the extensional margin of the Apennines.</p><p>The integration of offshore data in the study of past episodes of ground deformation, by yielding a more complete picture of the ground motions associated to the post-collapse evolution of the Campi Flegrei caldera, bears a significant contribution for a 3D reconstruction of this high-risk resurgence caldera. Besides, the multidisciplinary approach presented here can be relevant for investigations of other calderas spanning the sea-land transition.</p>


2020 ◽  
Author(s):  
Arne Spang ◽  
Tobias Baumann ◽  
Boris Kaus

<p>For the past decades, several numerical studies have successfully reproduced the concentric uplift pattern observed above the Altiplano-Puna Magma Body (APMB) in the central Andes. However, the temperature- and strain rate-dependent viscoelastoplastic rheology of rocks, the buoyancy of magma, the effects of modelling in 3D as well as the shape of the magma body have often been simplified or neglected.</p><p>Here, we use a joint interpretation of seismic imaging and gravity anomalies to constrain location, 3D shape and density of the magma body. With the help of the thermo-mechanical finite difference code LaMEM, we then model the surface deformation and test our results against observations made by Interferometric Synthetic-Aperture Radar (InSAR) missions. This way, we gain insights into the dynamics and rheology of the present-day magmatic system and can test how a change to the current conditions (e.g., magma influx) could impact it.</p><p>We find that only an APMB with a maximum thickness of 14 to 18 km and a corresponding density contrast to the surrounding host rock of 100 to 175 kg/m<sup>3</sup> satisfies both tomography and Bouguer data. Based on that and the chemistry of eruption products, we estimate the melt content of the APMB to be on the order of 20 - 25%. We also find that the observed uplift can be reproduced by magma-induced buoyancy forces without the need for an additional pressure source or magma injection within the mush, and that the geometry of the top of the magma body exerts a major control on the deformation pattern at the surface.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Hao Luo ◽  
Ji Wang ◽  
Yasen Gou ◽  
Hongmei Yu ◽  
Peng Shu ◽  
...  

The southern marginal fault of the Qaidam Basin (SMQBF) is a block-bounding border fault that has played a key role in the structural evolution of the Kunlun Fault. However, its geometric and dynamic deformation patterns since the Late Pleistocene have not been clearly observed. Field investigations, combined with high-resolution imagery and shallow seismic profiles, show that the SMQBF is a thrust fault with a sinistral strike-slip component composed of several secondary faults. Its Late Quaternary deformation pattern is characterized by piggyback thrust propagation, and the frontal fault may not be exposed to the surface. Due to the flexural slip of the hanging strata of the secondary fault, sub-parallel faults with widths of thousands of meters have formed on high terraces; these are important when assessing the seismic hazard of this area. Based on high-resolution topographic data obtained using an unmanned erial vehicle and optically stimulated luminescence chronology, the slip rates of several secondary faults were obtained. The vertical and strike-slip rates of the SMQBF were determined to be 0.96 ± 0.33 mm/a and 2.66 ± 0.50 mm/a, respectively, which may be the minimum rates for the fault. Considering that the SMQBF is composed of several secondary faults, these rates possibly correspond to minimum deformation only. The evident sinistral strike-slip of the SMQBF indicates that although the sinistral slip of the Kunlun Fault system is concentrated in main fault of this system, the branch faults have a significant influence on the lateral extrusion of the Qinghai-Tibet Plateau.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Sign in / Sign up

Export Citation Format

Share Document