scholarly journals Ground target finding mechanism for unmanned aerial vehicles to secure crop field data

Author(s):  
Mohammad Ammad Uddin ◽  
Muhammad Ayaz ◽  
Ali Mansour ◽  
El‐Hadi M. Aggoune ◽  
Ahmad Hani El Fawal ◽  
...  
2006 ◽  
Vol 110 (1105) ◽  
pp. 163-172 ◽  
Author(s):  
F-B Hsiao ◽  
T-L Liu ◽  
Y-H Chien ◽  
M-T Lee ◽  
R. Hirst

Abstract The use of unmanned aerial vehicles (UAVs) in various military and civil applications is the subject of much current attention. With recent developments in personal computer technology, and the availability at affordable cost of peripherals, and electronic and optical sensors, UAVs for long endurance missions, with flight autonomy beyond the visual range, have become an attractive challenge for study in universities and research institutes. This paper describes the development of a target-lock-on optical remote sensing system to be used as a payload in a university-class UAV. To accomplish autonomous way-point navigation for the conduct of optical sensing surveillance, a gimbaled-platform with servo control and an Attitude and Heading Reference System (AHRS) navigation system for UAV position and attitude measurements have been developed. The UAV also utilises a Global Position System (GPS) receiver, a pressure altimeter, gyroscopes and an electric compass. A novel mathematical model is proposed to calculate the optimal parameters for orientating the CCD camera line of sight with a ground target, designated in real time from a ground control station. Both ground and flight test results have demonstrated the feasibility of the navigation control scheme and the UAV’s ability to conduct ground target acquisition and image transmission.


Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 47
Author(s):  
Javier Hernández-Cole ◽  
Edgar Ortiz-Malavassi ◽  
Roger Moya ◽  
Olmán Murillo

The main objective of this research was to evaluate the use of unmanned aerial vehicles (UAVs) in estimating the aboveground biomass and carbon, and the dasometric characteristics at three different spacings (2.5 m × 1.0 m, 2.5 m × 2.0 m and 2.5 m × 3.0 m) in a silvopastoral system (SPS) for the biomass production of Tectona grandis. A total of 90 trees were sampled, 63 of which were used to perform a dasometric evaluation (vertical and horizontal) in a spacing test in an SPS, and the rest to evaluate the use of UAVs in estimating the aboveground biomass in the spacing test. The results showed significant differences in average diameter at breast height (dbh) between spacings, and in aboveground biomass per tree. The amount of aboveground biomass and carbon per hectare increases at smaller spacings, but the differences were not statistically significant. A logarithmic model was prepared to estimate the dbh based on the crown diameter from the data collected taken in the field, since estimating this variable by means of UAVs is difficult. Significant differences were found in the aboveground biomass estimated using the field data compared to UAV data. The estimation of the crown diameter of the selected trees, hindered by the canopy closure in the SPS, was not adequate, which could influence the amount of aboveground biomass estimated using UAV data.


2019 ◽  
Vol 11 (17) ◽  
pp. 2045 ◽  
Author(s):  
Marlein Geraeds ◽  
Tim van Emmerik ◽  
Robin de Vries ◽  
Mohd Shahrizal bin Ab Razak

Plastic debris has become an abundant pollutant in marine, coastal and riverine environments, posing a large threat to aquatic life. Effective measures to mitigate and prevent marine plastic pollution require a thorough understanding of its origin and eventual fate. Several models have estimated that land-based sources are the main source of marine plastic pollution, although field data to substantiate these estimates remain limited. Current methodologies to measure riverine plastic transport require the availability of infrastructure and accessible riverbanks, but, to obtain measurements on a higher spatial and temporal scale, new monitoring methods are required. This paper presents a new methodology for quantifying riverine plastic debris using Unmanned Aerial Vehicles (UAVs), including a first application on Klang River, Malaysia. Additional plastic measurements were done in parallel with the UAV-based approach to make comparisons between the two methods. The spatiotemporal distribution of the plastics obtained with both methods show similar patterns and variations. With this, we show that UAV-based monitoring methods are a promising alternative for currently available approaches for monitoring riverine plastic transport, especially in remote and inaccessible areas.


Sign in / Sign up

Export Citation Format

Share Document