scholarly journals Evaluation of Unmanned Aerial Vehicles (UAV) as a Tool to Predict Biomass and Carbon of Tectona grandis in Silvopastoral Systems (SPS) in Costa Rica

Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 47
Author(s):  
Javier Hernández-Cole ◽  
Edgar Ortiz-Malavassi ◽  
Roger Moya ◽  
Olmán Murillo

The main objective of this research was to evaluate the use of unmanned aerial vehicles (UAVs) in estimating the aboveground biomass and carbon, and the dasometric characteristics at three different spacings (2.5 m × 1.0 m, 2.5 m × 2.0 m and 2.5 m × 3.0 m) in a silvopastoral system (SPS) for the biomass production of Tectona grandis. A total of 90 trees were sampled, 63 of which were used to perform a dasometric evaluation (vertical and horizontal) in a spacing test in an SPS, and the rest to evaluate the use of UAVs in estimating the aboveground biomass in the spacing test. The results showed significant differences in average diameter at breast height (dbh) between spacings, and in aboveground biomass per tree. The amount of aboveground biomass and carbon per hectare increases at smaller spacings, but the differences were not statistically significant. A logarithmic model was prepared to estimate the dbh based on the crown diameter from the data collected taken in the field, since estimating this variable by means of UAVs is difficult. Significant differences were found in the aboveground biomass estimated using the field data compared to UAV data. The estimation of the crown diameter of the selected trees, hindered by the canopy closure in the SPS, was not adequate, which could influence the amount of aboveground biomass estimated using UAV data.

2020 ◽  
Vol 21 (6) ◽  
Author(s):  
SASIWIMOL RINNAMANG ◽  
KAMPANART SIRIRUEANG ◽  
SORAVIS SUPAVETCH ◽  
PONTHEP MEUNPONG

Abstract. Rinnamang S, Sirirueang K, Supavetch S, Meunpong P. 2020. Estimation of aboveground biomass using aerial photogrammetry from unmanned aerial vehicles in teak (Tectona grandis) plantation in Thailand. Biodiversitas 21: 2369-2376. Thailand is one of the best teak planting locations in the world. Teak is one of the most species planting and a significant source of high-value timber in Thailand. For plantation management, biomass is one of the important factors while determining the production of a plantation and also for sustainable forest management. Unmanned Aerial Vehicles (UAV) have the ability to produce 3D RGB digital images which can be used to study the plantation characteristics. This study aimed to use aerial images and photogrammetry techniques derived from unmanned aerial vehicles (UAV) to estimate teak biomass in Thong Pha Phum plantation, Kanchanaburi Province, Thailand. We conducted our study on 15-and 36-year-old teak stands, and compared the tree dimension between data obtained from field measurement and that from aerial images and photogrammetry techniques. In the 15-year-old stand, the average tree height estimated from the UAV and ground-truthing were 12.34 and 13.06 m, respectively. In the 36-year-old stand, the average tree height from the UAV and ground-truthing were 28.87 and 29.39 m, respectively. We found that in both stands, the difference between data generated from the UAV and ground-truthing data was not significant (p-value = 0.07 and 0.306, respectively). There was also a strong correspondence between tree height estimated from the UAV and that measured on the ground which is indicated by the high R2 (i.e. 0.70 and 0.64 for the 15-and 36-year-old stands, respectively). Using UAV generated data, the total biomass of 15-and 36-year-old stands was estimated to be around 42.07 t ha-1 and 67.13 t ha-1, respectively. The overall results suggest that UAV can be used as an effective tool to survey and monitor stand’s productivity in teak plantation.


2020 ◽  
Vol 12 (24) ◽  
pp. 4144
Author(s):  
José Luis Gallardo-Salazar ◽  
Marín Pompa-García

Modern forestry poses new challenges that space technologies can solve thanks to the advent of unmanned aerial vehicles (UAVs). This study proposes a methodology to extract tree-level characteristics using UAVs in a spatially distributed area of pine trees on a regular basis. Analysis included different vegetation indices estimated with a high-resolution orthomosaic. Statistically reliable results were found through a three-phase workflow consisting of image acquisition, canopy analysis, and validation with field measurements. Of the 117 trees in the field, 112 (95%) were detected by the algorithm, while height, area, and crown diameter were underestimated by 1.78 m, 7.58 m2, and 1.21 m, respectively. Individual tree attributes obtained from the UAV, such as total height (H) and the crown diameter (CD), made it possible to generate good allometric equations to infer the basal diameter (BD) and diameter at breast height (DBH), with R2 of 0.76 and 0.79, respectively. Multispectral indices were useful as tree vigor parameters, although the normalized-difference vegetation index (NDVI) was highlighted as the best proxy to monitor the phytosanitary condition of the orchard. Spatial variation in individual tree productivity suggests the differential management of ramets. The consistency of the results allows for its application in the field, including the complementation of spectral information that can be generated; the increase in accuracy and efficiency poses a path to modern inventories. However, the limitation for its application in forests of more complex structures is identified; therefore, further research is recommended.


2019 ◽  
Vol 11 (17) ◽  
pp. 2045 ◽  
Author(s):  
Marlein Geraeds ◽  
Tim van Emmerik ◽  
Robin de Vries ◽  
Mohd Shahrizal bin Ab Razak

Plastic debris has become an abundant pollutant in marine, coastal and riverine environments, posing a large threat to aquatic life. Effective measures to mitigate and prevent marine plastic pollution require a thorough understanding of its origin and eventual fate. Several models have estimated that land-based sources are the main source of marine plastic pollution, although field data to substantiate these estimates remain limited. Current methodologies to measure riverine plastic transport require the availability of infrastructure and accessible riverbanks, but, to obtain measurements on a higher spatial and temporal scale, new monitoring methods are required. This paper presents a new methodology for quantifying riverine plastic debris using Unmanned Aerial Vehicles (UAVs), including a first application on Klang River, Malaysia. Additional plastic measurements were done in parallel with the UAV-based approach to make comparisons between the two methods. The spatiotemporal distribution of the plastics obtained with both methods show similar patterns and variations. With this, we show that UAV-based monitoring methods are a promising alternative for currently available approaches for monitoring riverine plastic transport, especially in remote and inaccessible areas.


2021 ◽  
Vol 4 (2) ◽  
pp. 78-86
Author(s):  
Samilly de Oliveira Pinheiro Silva ◽  
◽  
Daniela Pauletto ◽  
Lucas Sérgio de Sousa Lopes ◽  
Diego Damázio Baloneque ◽  
...  

The objective of this work was to evaluate microclimatic and edaphic variations in silvopastoral systems, a system in which forest, forage species and animals that graze in consortium are integrated for production. The research was conducted at Fazenda Boa Safra located in the municipality of Belterra. The data were collected in a timely manner in October 2016 in two environments: four forage areas and four arboreal areas with the species: Andiroba (Carapa guianensis Aubl), African Mahogany (Khaya ivorensis A. Chev.), Teak (Tectona grandis L. f.) and Cumaru (Dipteryx odorata Willd.). The variables studied were temperature, soil moisture, litter stock and canopy cover. The results indicate that coumaru is the species that offers better thermal comfort compared to other species, while andiroba stood out in the best litter supply. The role of vegetation cover promoted by trees in the silvopastoral system is highlighted, promoting a better surface temperature of the soil (2 cm deep) in relation to pasture.


Author(s):  
Mohammad Ammad Uddin ◽  
Muhammad Ayaz ◽  
Ali Mansour ◽  
El‐Hadi M. Aggoune ◽  
Ahmad Hani El Fawal ◽  
...  

Author(s):  
A.A. Moykin ◽  
◽  
A.S. Medzhibovsky ◽  
S.A. Kriushin ◽  
M.V. Seleznev ◽  
...  

Nowadays, the creation of remotely-piloted aerial vehicles for various purposes is regarded as one of the most relevant and promising trends of aircraft development. FAU "25 State Research Institute of Chemmotology of the Ministry of Defense of the Russian Federation" have studied the operation features of aircraft piston engines and developed technical requirements for motor oil for piston four-stroke UAV engines, as well as a new engine oil M-5z/20 AERO in cooperation with NPP KVALITET, LLC. Based on the complex of qualification tests, the stated operational properties of the experimental-industrial batch of M-5z/20 AERO oil are generally confirmed.


Sign in / Sign up

Export Citation Format

Share Document