On The Selection of Power Allocation Strategy in Power Domain Non‐Orthogonal Multiple Access (PD‐NOMA) for 6G and Beyond

Author(s):  
Mohamed Mounir ◽  
Mohamed B. El_Mashade ◽  
Ashraf Mohamed Aboshosha
2021 ◽  
Vol 270 ◽  
pp. 01031
Author(s):  
Yakov Kryukov ◽  
Dmitriy Pokamestov ◽  
Eugeniy Rogozhnikov

Power Domain Non-Orthogonal Multiple Access (PD-NOMA) is a perspective multiplexing technique for future cellular networks. Nevertheless, it is poorly studied and not applied in the existing systems due to the complexity of PD-NOMA signal processing, resource scheduling, and power allocation. The issue is that a modulation and coding scheme (MCS) selection, including power allocation, is a cooperative procedure considering the channel state information of each multiplexed user. It can be solved by enumerating all possible multiplexing combinations but at the expense of the high computational complexity. In our work, we propose a composed table with the joint MCS’s, which can be selected by the base station (BS) for the user multiplexing in a downlink PD-NOMA system based on their signal-to-noise (SNR) ratios. It allows selecting two MCS’s with two power allocation coefficients for both users and guarantees the 10% block error rate (BLER) performance in the additive white Gaussian noise (AWGN) channel. The joint MCS selection method is based on a max-rate scheduling strategy and provides system capacity maximization ignoring fairness between users. The proposed table is given in the Appendix.


ELKHA ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Khoirun Niamah ◽  
Solichah Larasati ◽  
Raudhatul Jannah

This research based on simulation to show impact of the power allocation on Non-Orthogonal Multiple Access (NOMA) using Successive Interference Cancellation (SIC). NOMA used superposition code (SC) on the transmitter and SIC on the receiver. NOMA has two categories power domain (PD) and code domain (CD). This research based on PD-NOMA simulated for downlink. The number of users who use the same recourse block are divided into two conditions: user with apply SIC and without SIC base on the value of channel gain from each user. Applying SC on the transmitter and SIC on the receiver will cancel of interference. Novelties of this research are the best performance of power allocation and user mobility based on parameter BER and SNR. Allocation of the power transmit based on value of channel gain every user, where user with value of channel gain is low will be allocated high power transmit, and otherwise. The best result performance of BER vs SNR used ratio power transmit 0.45 dB:0.55 dB, BER  get value SNR for 17 dB and  18 dB. The best performance SNR for mobility of user with speed    = 40 km/h value SNR 18 dB for BER . This research has proposed to show impact of power transmit and interference in performance NOMA.


2021 ◽  
Vol 10 (2) ◽  
pp. 785-792
Author(s):  
Anh-Tu Le ◽  
Minh-Sang Van Nguyen ◽  
Dinh-Thuan Do

Power domain based multiple access scheme is introduced in this paper, namely Non-orthogonal multiple-access (NOMA). We deploy a wireless network using NOMA together with a wireless power transfer (WPT) scheme for dedicated user over Nakagami-$m$ fading channel. When combined, these promising techniques (NOMA and WPT) improve the system performance in term of ergodic performance at reasonable coefficient of harvested power. However, fixed power allocation factors for each NOMA user can be adjusted at the base station and it further provide performance improvement. We design a new signal frame to deploy a NOMA scheme in WPT which adopts a linear energy harvesting model. The ergodic capacity in such a NOMA network and power allocation factors can be updated frequently in order to achieve a fair distribution among NOMA users. The exact expressions of ergodic capacity for each user is derived. The simulation results show that an agreement between analytic performance and Monte-Carlo simulation can be achieved. 


Author(s):  
Lokesh Bhardwaj ◽  
Ritesh Kumar Mishra ◽  
Ravi Shankar

In this work, the performance of the downlink non-orthogonal multiple access (NOMA) technique is investigated for two users considering optimal power allocation factors. The power domain NOMA differentiates the users based on channel gains by providing different power levels and it is demonstrated that optimal power allocation is only possible when the gain ratio is maximum. Further, the range of optimal power levels is derived for the strong user having better channel conditions. Furthermore, the outage probability (OP) has been derived for ordered NOMA in the downlink through the cumulative density function-based approach. The simulation results demonstrate the improvement in sum rate capacity for optimal power allocation as compared to random power allocation, and the OP reduces with the signal-to-noise ratio more sharply for the stronger user.


2020 ◽  
Vol 7 (4) ◽  
pp. 659-666
Author(s):  
H.T. Madan ◽  
Prabhugoud I. Basarkod

Non orthogonal multiple access (NOMA) in cognitive radio (CR) network has been recognized as potential solution to support the simultaneous transmission of both primary and secondary users. In addition, CR-NOMA can also be used to serve multiple secondary networks in overlay cognitive radio networks. The aim of our work is to increase the secondary user’s throughput without compromising in QoS requirements of the primary users. Our presented work analyses the performance of power domain NOMA in cognitive radio networks for both uplink and downlink scenarios. The primary aspect of the work is to investigate the impact of power allocation on spectrum efficiency and fairness performance of CR-NOMA. Objective function is to maximize the overall throughput under the QOS constraints of the users. We have derived closed form expressions for optimized power allocation coefficient(α) for CR-NOMA uplink and downlink communications. Parameters causing the channel outage, have been examined and conditions for outage probability is derived for CR-NOMA communication. Finally, we have presented the simulation results to validate the mathematical models that are developed for power allocation coefficient and outage probability.


2020 ◽  
Author(s):  
Yue Yin ◽  
Miao Liu ◽  
Guan Gui ◽  
Haris Gacanin ◽  
Fumiyuki Adachi

<div>Non-orthogonal multiple access (NOMA) based</div><div>wireless caching network (WCN) is considered as one of the most</div><div>promising technologies for next-generation wireless communications</div><div>since it can significantly improve the spectral efficiency.</div><div>In this paper, we propose a quality of service (QoS)-oriented</div><div>dynamic power allocation strategy for NOMA-WCN. In content</div><div>stack phase, the base station sends multiple files to the content</div><div>servers by allocating different powers according to the different</div><div>QoS targets of files, for ensuring that all content servers can</div><div>successfully decode the two most popular files. In content deliver</div><div>phase, the content servers serve two users at the same time</div><div>by allocating the minimum power to the far user according</div><div>to the QoS requirement, and then all the remaining power is</div><div>allocated to the near user. Hence, the proposed power allocation</div><div>scheme is able to increase the hit probability and drop the outage</div><div>probability compared with conventional method. Simulation</div><div>results confirm that the proposed power allocation method can</div><div>significantly improve the caching hit probability and reduce the</div><div>user outage probability. It is also shown that this strategy can</div><div>reduce the user delay time, improve the system efficiency and</div><div>the capacity.</div>


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1314-1316

Non-orthogonal multiple access has been put forward as a key technique for 5G. It can provide power-domain and code-domain multiplexing and enables to satisfy the data demand. Its capacity and spectral efficiency are investigated-ed and analyzed. In comparison to the conventional orthogonal multiple access, the existing dominant non-orthogonal multiple access can provide a higher quality data service for multiple users when the transmitted signals are empowered by the power allocation technique and the received signals are decoded by the channel interference cancellation scheme. In this study, NOMA is found to be a front-edge technology the 5G communications.


Author(s):  
Chao Li ◽  
Zihe Gao ◽  
Junjuan Xia ◽  
Dan Deng ◽  
Liseng Fan

AbstractThis paper investigates cache-enabled physical-layer secure communication in a no-orthogonal multiple access (NOMA) network with two users, where an intelligent unmanned aerial vehicle (UAV) is equipped with attack module which can perform as multiple attack modes. We present a power allocation strategy to enhance the transmission security. To this end, we propose an algorithm which can adaptively control the power allocation factor for the source station in NOMA network based on reinforcement learning. The interaction between the source station and UAV is regarded as a dynamic game. In the process of the game, the source station adjusts the power allocation factor appropriately according to the current work mode of the attack module on UAV. To maximize the benefit value, the source station keeps exploring the changing radio environment until the Nash equilibrium (NE) is reached. Moreover, the proof of the NE is given to verify the strategy we proposed is optimal. Simulation results prove the effectiveness of the strategy.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1399 ◽  
Author(s):  
Omar A. Saraereh ◽  
Amer Alsaraira ◽  
Imran Khan ◽  
Peerapong Uthansakul

Non-orthogonal multiple access (NOMA) has become the key technology in the future 5G wireless networks. It can achieve multi-user multiplexing in the transmit power domain by allocating different power, which can effectively improve the system capacity and spectral efficiency. Aiming at the problem of high computational complexity and improving system capacity in non-orthogonal multiple access (NOMA) based on orthogonal frequency division multiple access (OFDMA) for 5G wireless cellular networks, this paper proposes an improved low complexity radio resource allocation algorithm for user grouping and power allocation optimization. The optimization model is established with the goal of maximizing system capacity. Through the step-by-step optimization idea, the complex non-convex optimization problem is decomposed into two sub-problems to be solved separately. Firstly, all users are grouped based on the greedy method, and then the power allocation is performed on the sub-carriers of the fixed group. Simulation results show that the proposed algorithm has better system capacity than the existing state-of-the-art algorithms and reduced complexity performance.


Sign in / Sign up

Export Citation Format

Share Document