A lightweight data transmission reduction method based on a dual prediction technique for sensor networks

Author(s):  
Khushboo Jain ◽  
Anoop Kumar
2020 ◽  
Vol 23 (2) ◽  
pp. 1197-1216 ◽  
Author(s):  
Gaby Bou Tayeh ◽  
Abdallah Makhoul ◽  
Jacques Demerjian ◽  
Christophe Guyeux ◽  
Jacques Bahi

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 85
Author(s):  
Marcin Lewandowski ◽  
Bartłomiej Płaczek ◽  
Marcin Bernas

The recent development of wireless wearable sensor networks offers a spectrum of new applications in fields of healthcare, medicine, activity monitoring, sport, safety, human-machine interfacing, and beyond. Successful use of this technology depends on lifetime of the battery-powered sensor nodes. This paper presents a new method for extending the lifetime of the wearable sensor networks by avoiding unnecessary data transmissions. The introduced method is based on embedded classifiers that allow sensor nodes to decide if current sensor readings have to be transmitted to cluster head or not. In order to train the classifiers, a procedure was elaborated, which takes into account the impact of data selection on accuracy of a recognition system. This approach was implemented in a prototype of wearable sensor network for human activity monitoring. Real-world experiments were conducted to evaluate the new method in terms of network lifetime, energy consumption, and accuracy of human activity recognition. Results of the experimental evaluation have confirmed that, the proposed method enables significant prolongation of the network lifetime, while preserving high accuracy of the activity recognition. The experiments have also revealed advantages of the method in comparison with state-of-the-art algorithms for data transmission reduction.


Author(s):  
Amandeep Kaur Sohal ◽  
Ajay Kumar Sharma ◽  
Neetu Sood

Background: An information gathering is a typical and important task in agriculture monitoring and military surveillance. In these applications, minimization of energy consumption and maximization of network lifetime have prime importance for green computing. As wireless sensor networks comprise of a large number of sensors with limited battery power and deployed at remote geographical locations for monitoring physical events, therefore it is imperative to have minimum consumption of energy during network coverage. The WSNs help in accurate monitoring of remote environment by collecting data intelligently from the individual sensors. Objective: The paper is motivated from green computing aspect of wireless sensor network and an Energy-efficient Weight-based Coverage Enhancing protocol using Genetic Algorithm (WCEGA) is presented. The WCEGA is designed to achieve continuously monitoring of remote areas for a longer time with least power consumption. Method: The cluster-based algorithm consists two phases: cluster formation and data transmission. In cluster formation, selection of cluster heads and cluster members areas based on energy and coverage efficient parameters. The governing parameters are residual energy, overlapping degree, node density and neighbor’s degree. The data transmission between CHs and sink is based on well-known evolution search algorithm i.e. Genetic Algorithm. Conclusion: The results of WCEGA are compared with other established protocols and shows significant improvement of full coverage and lifetime approximately 40% and 45% respectively.


Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 551-584
Author(s):  
Samir Mustapha ◽  
Ye Lu ◽  
Ching-Tai Ng ◽  
Pawel Malinowski

The development of structural health monitoring (SHM) systems and their integration in actual structures has become a necessity as it can provide a robust and low-cost solution for monitoring the structural integrity of and the ability to predict the remaining life of structures. In this review, we aim at focusing on one of the important issues of SHM, the design, and implementation of sensor networks. Location and number of sensors, in any SHM system, are of high importance as they impact the system integration, system performance, and accuracy of assessment, as well as the total cost. Hence we are interested in shedding the light on the sensor networks as an essential component of SHM systems. The review discusses several important parameters including design and optimization of sensor networks, development of academic and commercial solutions, powering of sensors, data communication, data transmission, and analytics. Finally, we presented some successful case studies including the challenges and limitations associated with the sensor networks.


2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


Sign in / Sign up

Export Citation Format

Share Document