Optimization of the quality‐to‐power ratio of scalable video code video transmission in millimeter‐wave massive multiple‐input multiple‐output systems

Author(s):  
Ping Zhang ◽  
Long Zhao ◽  
Binyao Cheng ◽  
Pengzun Gao
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Guo ◽  
Behrooz Makki ◽  
Tommy Svensson

Initial access (IA) is identified as a key challenge for the upcoming 5G mobile communication system operating at high carrier frequencies, and several techniques are currently being proposed. In this paper, we extend our previously proposed efficient genetic algorithm- (GA-) based beam refinement scheme to include beamforming at both the transmitter and the receiver and compare the performance with alternative approaches in the millimeter wave multiuser multiple-input-multiple-output (MU-MIMO) networks. Taking the millimeter wave communications characteristics and various metrics into account, we investigate the effect of different parameters such as the number of transmit antennas/users/per-user receive antennas, beamforming resolutions, and hardware impairments on the system performance employing different beam refinement algorithms. As shown, our proposed GA-based approach performs well in delay-constrained networks with multiantenna users. Compared to the considered state-of-the-art schemes, our method reaches the highest service outage-constrained end-to-end throughput with considerably less implementation complexity. Moreover, taking the users’ mobility into account, our GA-based approach can remarkably reduce the beam refinement delay at low/moderate speeds when the spatial correlation is taken into account. Finally, we compare the cases of collaborative users and noncollaborative users and evaluate their difference in system performance.


2021 ◽  
Vol 17 (11) ◽  
pp. 155014772110553
Author(s):  
Xiaoping Zhou ◽  
Haichao Liu ◽  
Bin Wang ◽  
Qian Zhang ◽  
Yang Wang

Millimeter-wave massive multiple-input multiple-output is a key technology in 5G communication system. In particular, the hybrid precoding method has the advantages of being power efficient and less expensive than the full-digital precoding method, so it has attracted more and more attention. The effectiveness of this method in simple systems has been well verified, but its performance is still unknown due to many problems in real communication such as interference from other users and base stations, and users are constantly on the move. In this article, we propose a dynamic user clustering hybrid precoding method in the high-dimensional millimeter-wave multiple-input multiple-output system, which uses low-dimensional manifolds to avoid complicated calculations when there are many antennas. We model each user set as a novel Convolutional Restricted Boltzmann Machine manifold, and the problem is transformed into cluster-oriented multi-manifold learning. The novel Convolutional Restricted Boltzmann Machine manifold learning seeks to learn embedded low-dimensional manifolds through manifold learning in the face of user mobility in clusters. Through proper user clustering, the hybrid precoding is investigated for the sum-rate maximization problem by manifold quasi-conjugate gradient methods. This algorithm avoids the traditional method of processing high-dimensional channel parameters, achieves a high signal-to-noise ratio, and reduces computational complexity. The simulation result table shows that this method can get almost the best summation rate and higher spectral efficiency compared with the traditional method.


Author(s):  
Shingo Yoshizawa ◽  
Yoshikazu Miyanaga

Multiple-input multiple-output orthogonal frequency multiplexing (MIMO-OFDM) is powerfulin enhancing communication capacity or reliance. The IEEE802.11n standard defines use of four spatial streams in spatial division multiplexing (SDM). The task group of IEEE802.11ac will extend it to eight spatial streams. We present an 88 MIMOOFDM baseband transceiver compatible with the IEEE802.11ac specification. Two 88 MMSE MIMO detectors based on Streassen’s matrix inversion have been designed for real-time MIMO detection. To demonstrate MIMO-OFDM transmission, we have prototyped a FPGA-based testbed in 22 MIMOOFDM for field experiment and video transmission.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 519
Author(s):  
Gianmarco Romano

Massive multiple-input multiple-output (mMIMO) communication systems and the use of millimeter-wave (mm-Wave) bands represent key technologies that are expected to meet the growing demand of data traffic and the explosion of the number of devices that need to communicate over 5G/6G wireless networks [...]


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fei Wang ◽  
Zhaoyun Duan ◽  
Xin Wang ◽  
Qing Zhou ◽  
Yubin Gong

A millimeter-wave wideband antenna is presented for the 5th generation applications. The operation band ranges from 24 GHz to 39 GHz which covers most of the Ka band. Furthermore, a 9×9 multiple-input-multiple-output (MIMO) antenna is developed. The high isolation is achieved without introducing external decoupling structures. The transmission coefficient is under −20 dB within only 0.4 mm space between antenna elements. The radiation pattern also shows the stability within the wide operation band. Both simulated and measured results show that this proposed MIMO antenna is suitable for the future wireless communications.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 927 ◽  
Author(s):  
Alemaishat ◽  
Saraereh ◽  
Khan ◽  
Affes ◽  
Li ◽  
...  

Aiming at the problem of high computational complexity due to a large number of antennas deployed in mmWave massive multiple-input multiple-output (MIMO) communication systems, this paper proposes an efficient algorithm for optimizing beam control vectors with low computational complexity based on codebooks for millimeter-wave massive MIMO systems with split sub-arrays hybrid beamforming architecture. A bidirectional method is adopted on the beam control vector of each antenna sub-array both at the transmitter and receiver, which utilizes the idea of interference alignment (IA) and alternating optimization. The simulation results show that the proposed algorithm has low computational complexity, fast convergence, and improved spectral efficiency as compared with the state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document