scholarly journals High Isolation Millimeter-Wave Wideband MIMO Antenna for 5G Communication

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fei Wang ◽  
Zhaoyun Duan ◽  
Xin Wang ◽  
Qing Zhou ◽  
Yubin Gong

A millimeter-wave wideband antenna is presented for the 5th generation applications. The operation band ranges from 24 GHz to 39 GHz which covers most of the Ka band. Furthermore, a 9×9 multiple-input-multiple-output (MIMO) antenna is developed. The high isolation is achieved without introducing external decoupling structures. The transmission coefficient is under −20 dB within only 0.4 mm space between antenna elements. The radiation pattern also shows the stability within the wide operation band. Both simulated and measured results show that this proposed MIMO antenna is suitable for the future wireless communications.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Abubaker Ahmed Elobied ◽  
Xue-Xia Yang ◽  
Ningjie Xie ◽  
Steven Gao

This paper presents a close-spaced dual-band 2 × 2 multiple-input multiple-output (MIMO) antenna with high isolation based on half-mode substrate integrated waveguide (HMSIW). The dual-band operation of the antenna element is achieved by loading a rectangular patch outside the radiating aperture of an HMSIW cavity. The HMSIW cavity is excited by a coaxial probe, whereas the rectangular patch is energized through proximity coupling by the radiating aperture of HMSIW. The antenna elements can be closely placed using the rotation and orthogonal arrangement for a 2 × 2 array. Small neutralization lines at the center of the MIMO antenna can increase the isolation among its elements by around 10 dB in the lower band and 5 dB in the higher band. A prototype of the MIMO antenna is fabricated and its performance is measured. The measured results show that the resonant frequencies are centered at 4.43 and 5.39 GHz with bandwidths of 110 and 80 MHz and peak gains of 6 and 6.4 dBi, respectively. The minimum isolation in both bands is greater than 35 dB. The envelope correlation coefficient is lower than 0.005 within two operating bands.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Yunliang Long

This paper presents a long-term evolution (LTE) 700 MHz band multiple-input-multiple-output (MIMO) antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λat 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz withS11≤−6 dB andS21≤−23 dB.


Author(s):  
EFRI SANDI ◽  
WISNU DJATMIKO ◽  
RIZKITA KURNIA PUTRI

ABSTRAK Pada penelitian ini dikembangkan rekayasa antena mikrostrip (MSA) dengan penambahan U-slot ganda untuk meningkatkan performansi bandwidth antena mikrostrip. Penelitian sebelumnya berfokus pada penambahan U-slot tunggal dan didesain untuk frekuensi di bawah 15 GHz. Kebutuhan utama antena 5G adalah memiliki bandwidth yang lebar dan kemampuan Multiple Input Multiple Output (MIMO). Untuk itu perlu dikembangkan desain antena MIMO 5G dengan bandwidth yang lebih lebar pada frekuensi millimeter-wave 28 GHz sebagai kandidat utama alokasi frekuensi untuk komunikasi seluler 5G. Pada penelitian ini diajukan teknik desain antena MIMO dengan penambahan rekayasa U-slot ganda untuk meningkatkan performansi bandwidth. Hasil kalkulasi dan simulasi menunjukkan bahwa dengan penambahan U-slot ganda, dihasilkan peningkatan performansi bandwith sebesar 68% dibandingkan desain antena tanpa U-slot. Jika dibandingkan dengan hasil penelitian U-slot sebelumnya, penambahan U-slot ganda menghasilkan peningkatan bandwidth sebesar 76%. Kata kunci: U-Slot ganda, antena 5G millimeter-wave, MIMO, bandwidth ABSTRACT In this study, a microstrip antenna (MSA) was developed with the addition of a double U-slot to improve bandwidth performance. Previous studies have focused on adding single U-slots and designed for frequencies below 15 GHz. The main requirement for 5G antennas is high bandwidth performance and multiple inputmultiple output capabilities (MIMO). Therefore, it is necessary to develop a 5G MIMO antenna with broader bandwidth at the millimeter-wave frequency 28 GHz as the primary candidate for frequency allocation for 5G cellular communication. In this study, MIMO antenna design techniques were proposed with the addition of a double U-slot method to improve bandwidth performance. The calculation and simulation results show that with the addition of a double U-slot, an increase in bandwidth performance of 68% compared to antenna designs without U-slots and 76% when compared to using a single U-slot in previous studies. Keywords: Double U-Slot, millimeter-wave 5G antenna, MIMO, bandwidth


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Byeonggwi Mun ◽  
Frances J. Harackiewicz ◽  
Byeongkwan Kim ◽  
Hyunho Wi ◽  
Jonghyun Lee ◽  
...  

A compact handset multiple-input multiple-output (MIMO) antenna for long-term evolution (LTE) 700 band (746~787 MHz) applications is proposed. The proposed antenna consists of two symmetrical PIFAs. Without the usage of any additional coupling elements between closely mounted antennas, a high isolation (>15 dB) and a low enveloped correlation coefficient (ECC<0.35) are achieved by the optimum location and arrangement of MIMO antenna elements.


Author(s):  
B Shruthi, Et. al.

A multiple-input-multiple-output lightweight printed ultrawideband antenna among a dimension about 40×50mm2to minimise the coupling between these two antennas, the proposed antenna with a quarter circular radiating patch, with defected ground structure is designed. The antenna developed by MIMO is highly isolated, stronger than -15dB. In the working band, from 2.67GHz to 14GHz. The simulation indicates that the proposed MIMO antenna will balance the complete enhanced band with a broad bandwidth by making use of CST. It operates at 5.83GHz, 8.07GHz, 12.28GHz and bandwidth tends to cover the ultrawideband range. UWB band and high isolation, that assemblesit perfect for any application of wireless modules in the UWB range, in order to minimise coupling. For indoor applications and wireless applications these frequency range is used.


Author(s):  
Amirul Aizat Zolkefli ◽  
Badrul Hisham Ahmad ◽  
Noor Azwan Shairi ◽  
Adib Othman ◽  
Zahriladha Zakaria ◽  
...  

A single pole double throw (SPDT) discrete switch design using switchable substrate integrated waveguide (SIW) resonators is proposed in this paper. It was designed for the millimeter wave multiple input multiple output (MIMO) transceiver. An example application is for 5G communication in 26 GHz band. High isolation between transmitter and receiver (in the transceiver) is needed in SPDT switch design to minimize any high radio frequency (RF) power leakage in the receiver. Therefore, the use of switchable SIW resonators can achieve higher isolation if compared to the conventional series SPDT switch, where the isolation of the proposed SPDT is depend on the bandstop response of the SIW resonators. The switchable SIW resonators can be switched between allpass and bandstop responses to allow the operation between transmit and receive modes. As a result, the simulation and measurement showed that the proposed SPDT switch produced an isolation higher than 25 dB from 24.25 to 27.5 GHz compared to the conventional design.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Doae El Hadri ◽  
Alia Zakriti ◽  
Asmaa Zugari ◽  
Mohssine El Ouahabi ◽  
Jamal El Aoufi

This paper presents a compact Multiple Input Multiple Output antenna with high isolation and low envelope correlation (ECC) for fifth-generation applications using spatial diversity technique. The proposed MIMO antenna consists of two single antennas, each having size of 13 × 12.8 mm2, symmetrically arranged next to each other. The single and MIMO antennas are simulated and analyzed. To verify the simulated results, the prototype antennas were fabricated and measured. A good agreement between measurements and simulations is obtained. The proposed antenna covers the 28 GHz band (27.5–28.35 GHz) allocated by the FCC for 5G applications. Moreover, the isolation is more than 35 dB and the ECC is less than 0.0004 at the operating band, which means that the mutual coupling between the two elements is negligible. The MIMO parameters, such as diversity gain (DG), total active reflection coefficient (TARC), realized gain, and efficiency, are also studied. Thus, the results demonstrate that our antenna is suitable for 5G MIMO applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Shi ◽  
Lu Zhang ◽  
Chang-Hong Liang

A multiband multiple-input multiple-output (MIMO) antenna system consisting of two antenna elements has been proposed for 4G USB dongle application. The designed MIMO antenna system with a compact volume of 25 mm × 30 mm × 3.5 mm operates in two zeroth-order resonance (ZOR) modes to cover the LTE band 13 (746–787 MHz), GSM850/900 (824–960 MHz), and LTE band 7 (2500–2690 MHz) simultaneously. A pair of L-shaped parasitic strips and an etching slot on the ground are employed to achieve good isolation between two elements. Measurement results show that proposed MIMO antenna system has total efficiency over 40% across the operation band and isolation less than −8 dB at the lower band and −16 dB at the upper band, respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Kang Ding ◽  
Bing Zhang ◽  
Jianfeng Li ◽  
Duolong Wu ◽  
...  

A compact high isolation ultrawideband (UWB) multiple-input-multiple-output (MIMO) antenna is designed. The proposed MIMO antenna consists of a rectangular monopole antenna and a slot antenna fed by two microstrip lines, respectively. To improve the impedance matching, a circular coupling structure is designed to feed the tapered slot antenna. The parasitic resonance introduced by the ground stub helps to extend the impedance bandwidth of monopole antenna at the upper UWB band. Commonly used complex decoupling or coupling structures are eliminated that endow the proposed antenna minimized foot print, which is preferred in mobile handset. Although without decoupling structure, high isolation is obtained between two antenna elements. Simulation and measurement verify the antenna’s desirable performance, showing a broad impedance bandwidth of 3.1–10.6 GHz with |S11| < −10 dB and |S21| < −20 dB over 3.4–10.6 GHz, and |S21| < −18 dB from 3.1–3.4 GHz.


Author(s):  
Pavithra S ◽  
AmeeliaRoseline A

In MIMO(multiple input multiple output) system, antenna performance are degraded by mutual coupling hence to overcome this we go for circular polarization. In this paper we use planar, circularly polarized MIMO patch with three grounded stubs, F-shaped mirrored structure to achieve same time isolation &matching with offset feeding between two patches for circularly polarization.The elements of antenna are closely packed with 0.06λ0 of edge to edge distance at 2.5 GHZ frequency. The proposed antenna will results the impedance matching S11 < -10 dB and high isolation of S12 < -20 dB.


Sign in / Sign up

Export Citation Format

Share Document