Phosphorylated avocado seed: A renewable biomaterial for preparing a flame retardant biofiller

2021 ◽  
Author(s):  
J. David Zuluaga‐Parra ◽  
Luis F. Ramos‐deValle ◽  
Saul Sánchez‐Valdes ◽  
Jose Roman Torres‐Lubián ◽  
Oliverio S. Rodriguez‐Fernadez ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
DAVID Zuluaga-Parra ◽  
L.F Ramos-deValle ◽  
Saul Sanchez ◽  
J.R. Torres-Lubián ◽  
J.A. Rodríguez-Gonzalez ◽  
...  

Abstract The cellulose and starch present in the avocado seed can be chemically modified to obtain biofillers with fire retarding characteristics. The resulting composites could be used as substitute of the corresponding halogenated composites. For this, the avocado seed was first washed, dehydrated and pulverized, and thereafter, chemically modified with phosphoric acid in the presence of urea. This was studied using infrared spectroscopy, nuclear magnetic resonance and X-Ray photoelectron spectroscopy, in order to determine the resulting chemical structure and confirm the presence of the proposed functional groups. In addition, scanning electron microscopy and elemental analysis were used, respectively, to establish the resulting morphological changes, as well as the elements present on the surface of the modified material. Thermogravimetric analysis was also carried out in order to establish the thermal stability of the material and predict the effect on the flame retardancy due to the mentioned chemical modification. Further tests established that the obtained modified structure and morphology of the avocado seed was highly dependent on the method used to dehydrate the pulverized avocado seed. It was also determined that chemical modification greatly increased the thermal stability of the avocado seed in air atmosphere. The flame-retardant effect of the modified avocado seed was assessed in polyethylene/ethylene-vinyl-acetate (PE/EVA) composites via cone calorimeter tests. These results showed that the modified avocado seed decreased the peak of the heat release rate (pHRR) by 50% and the total heat released (THR) by 15%. This phosphated avocado seed could be a good option as a renewable biofiller for polymer composites with enhanced flame-retardant properties.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Musdar Musdar ◽  
Lukmanul Hakim ◽  
Juliani Juliani ◽  
Jailani Jailani

White sweet potato starch (Ipomea batatas L.) and avocado seed starch (Parsea americana Mill) derived from local plants have the potential to be developed as agricultural products. Starch is a hydrocolloid compound as a potential local resource to be utilized. Glycerol function as an anti-freezing which is hygroscopic. This study aims to determine the ratio of white sweet potato starch with avocado seed starch and the concentration of glycerol for making edible film. This study was an experiment using a completely randimized factorial design with 2 (two) main factor consisting of a comparison of white sweet potato starch and avocado seed with 3 levels: P1 = 35%:65%., P2=50%:50%., P3=65%:35% and glycerol concentration with 3 levels: G1=1%., G2=2%., G3=3%. The best result reasearch were content of 23.03% (tratment P1G1), solubility of 55.57% (treatment P3G2)., swelling test of 9.83% (treatment P2g3)., elongation of 8.18% (treatment P3G2)


2019 ◽  
Vol 9 (2) ◽  
pp. 182-191
Author(s):  
Akihiro Minami ◽  
Hirokazu Tamura ◽  
Hidetoshi Sakamoto ◽  
Yoshifumi Ohbuchi ◽  
Yasuo Marumo

Author(s):  
Amanda Silva ◽  
Enio Henrique Pires da Silva ◽  
Danilo Janes ◽  
Romeu Rony Cavalcante da Costa ◽  
Giovanna Gabriela Crem Silva

2012 ◽  
Vol 29 (9) ◽  
pp. 1090
Author(s):  
Donghai YUAN ◽  
Anbin TANG ◽  
Jie HUANG ◽  
Hanbing MA

2020 ◽  
Vol 17 (10) ◽  
pp. 760-771
Author(s):  
Qirui Gong ◽  
Niangui Wang ◽  
Kaibo Zhang ◽  
Shizhao Huang ◽  
Yuhan Wang

A phosphaphenanthrene groups containing soybean oil based polyol (DSBP) was synthesized by epoxidized soybean oil (ESO) and 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Soybean oil based polyol (HSBP) was synthesized by ESO and H2O. The chemical structure of DSBP and HSBP were characterized with FT-IR and 1H NMR. The corresponding rigid polyurethane foams (RPUFs) were prepared by mixing DSBP with HSBP. The results revealed apparent density and compression strength of RPUFs decreased with increasing the DSBP content. The cell structure of RPUFs was examined by scanning electron microscope (SEM) which displayed the cells as spherical or polyhedral. The thermal degradation and flame retardancy of RPUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL 94 vertical burning test. The degradation activation energy (Ea) of first degradation stage reduced from 80.05 kJ/mol to 37.84 kJ/mol with 80 wt% DSBP. The RUPF with 80 wt% DSBP achieved UL94 V-0 rating and LOI 28.3. The results showed that the flame retardant effect was mainly in both gas phase and condensed phase.


Sign in / Sign up

Export Citation Format

Share Document