An exact Riemann solver for one‐dimensional multimaterial elastic‐plastic flows with Mie‐Grüneisen equation of state without vacuum

Author(s):  
Li Liu ◽  
Jun‐Bo Cheng ◽  
Yongxing Shen
2016 ◽  
Vol 13 (04) ◽  
pp. 1641010
Author(s):  
Yang-Yao Niu

In this paper, an unsteady preconditioning formulation for multi-phase flows with arbitrary equation of state based on the approximated Riemann solver is developed for multi-phase flows at all speed. This paper considers a homogeneous two-phase multi-equation mixture model with the assumption of kinematics and thermodynamics equilibriums. The thermodynamics behaviors of liquid phase, vapor phase and their phase transitional process are described by a temperature-dependent hybrid equation of state. Benchmark test cases, including one-dimensional (1D) condensation shock in the cavitated nozzle and two-dimensional (2D) cavitated blunt body problem, demonstrate accurate capturing of interfaces, shock waves and cavitation zones.


1993 ◽  
Vol 50 (1) ◽  
pp. 51-70 ◽  
Author(s):  
D. Zoler ◽  
S. Cuperman ◽  
J. Ashkenazy ◽  
M. Caner ◽  
Z. Kaplan

A time-dependent quasi-one-dimensional model is developed for studying high- pressure discharges in ablative capillaries used, for example, as plasma sources in electrothermal launchers. The main features of the model are (i) consideration of ablation effects in each of the continuity, momentum and energy equations; (ii) use of a non-ideal equation of state; and (iii) consideration of space- and time-dependent ionization.


1994 ◽  
Vol 98 (979) ◽  
pp. 325-339 ◽  
Author(s):  
E. F. Toro ◽  
A. Chakraborty

Abstract An improved version (HLLC) of the Harten, Lax, van Leer Riemann solver (HLL) for the steady supersonic Euler equations is presented. Unlike the HLL, the HLLC version admits the presence of the slip line in the structure of the solution. This leads to enhanced resolution of computed slip lines by Godunov type methods. We assess the HLLC solver in the context of the first order Godunov method and the second order weighted average flux method (WAF). It is shown that the improvement embodied in the HLLC solver over the HLL solver is virtually equivalent to incorporating the exact Riemann solver.


1996 ◽  
Vol 453 ◽  
Author(s):  
Robert R. Reeber

AbstractThe thermophysical properties of diamond, a metastable material at room temperature, are difficult to measure at high temperatures. These properties are of interest for testing equation of state and interatomic potential models. Here we utilize a geometrical lattice transformation, one dimensional lattice dynamical theory, and the principle of corresponding states to calculate the elastic constants of diamond over an extended temperature range.


2008 ◽  
Vol 78 (6) ◽  
Author(s):  
Gentaro Watanabe ◽  
Giuliano Orso ◽  
Franco Dalfovo ◽  
Lev P. Pitaevskii ◽  
Sandro Stringari

1968 ◽  
Vol 35 (4) ◽  
pp. 782-786 ◽  
Author(s):  
R. J. Clifton

Assuming a one-dimensional rate independent theory of combined longitudinal and torsional plastic wave propagation in a thin-walled tube, restrictions are obtained on the possible speeds of elastic-plastic boundaries. These restrictions are shown to depend on the type of discontinuity at the boundary and on whether loading or unloading is occurring. The range of unloading (loading) wave speeds for the case when the nth time derivative of the solution is the first derivative that is discontinuous across the boundary is the complement of the range of unloading (loading) wave speeds for the case when the first discontinuity is in the (n + 1)th time derivative. Thus all speeds are possible for elastic-plastic boundaries corresponding to either loading or unloading. The general features of the discontinuities associated with loading and unloading boundaries are established, and examples are presented of unloading boundaries overtaking simple waves.


Sign in / Sign up

Export Citation Format

Share Document