Poly(Arylene Ether Sulfone) Copolymers and Related Systems from Disulfonated Monomer Building Blocks: Synthesis, Characterization, and Performance - A Topical Review

Fuel Cells ◽  
2005 ◽  
Vol 5 (2) ◽  
pp. 201-212 ◽  
Author(s):  
W. L. Harrison ◽  
M. A. Hickner ◽  
Y. S. Kim ◽  
J. E. McGrath
2017 ◽  
Vol 17 (2) ◽  
pp. 185-196
Author(s):  
Mario Scalas ◽  
Palmalisa Marra ◽  
Luca Tedesco ◽  
Raffaele Quarta ◽  
Emanuele Cantoro ◽  
...  

Abstract. This article describes the architecture of sea situational awareness (SSA) platform, a major asset within TESSA, an industrial research project funded by the Italian Ministry of Education and Research. The main aim of the platform is to collect, transform and provide forecast and observational data as information suitable for delivery across a variety of channels, like web and mobile; specifically, the ability to produce and provide forecast information suitable for creating SSA-enabled applications has been a critical driving factor when designing and evolving the whole architecture. Thus, starting from functional and performance requirements, the platform architecture is described in terms of its main building blocks and flows among them: front-end components that support end-user applications and map and data analysis components that allow for serving maps and querying data. Focus is directed to key aspects and decisions about the main issues faced, like interoperability, scalability, efficiency and adaptability, but it also considers insights about future works in this and similarly related subjects. Some analysis results are also provided in order to better characterize critical issues and related solutions.


Author(s):  
Rakesh Murthy ◽  
Aditya N. Das ◽  
Dan O. Popa

Heterogeneous assembly at the microscale has recently emerged as a viable pathway to constructing 3-dimensional microrobots and other miniaturized devices. In contrast to self-assembly, this method is directed and deterministic, and is based on serial or parallel microassembly. Whereas at the meso and macro scales, automation is often undertaken after, and often benchmarked against manual assembly, we demonstrate that deterministic automation at the MEMS scale can be completed with higher yields through the use of engineered compliance and precision robotic cells. Snap fasteners have long been used as a way to exploit the inherent stability of local minima of the deformation energy caused by interference during part mating. In this paper we assume that the building blocks are 2 1/2 -dimensional, as is the case with lithographically microfabricated MEMS parts. The assembly of the snap fasteners is done using μ3, a multi-robot microassembly station with unique characteristics located at our ARRI’s Texas Microfactory lab. Experiments are performed to demonstrate that fast and reliable assemblies can be expected if the microparts and the robotic cell satisfy a so-called “High Yield Assembly Condition” (H.Y.A.C.). Important design trade-offs for assembly and performance of microsnap fasteners are discussed and experimentally evaluated.


1995 ◽  
Author(s):  
Peter Schwenn ◽  
George Hazen

We describe some advances in Performance Prediction Programs - "PPP"1 for sailing yachts2 - primarily integrating PPP analysis into drawing and providing new sculpting operations in which fairness and desired hydrostatic and on her performance determining characteristics are maintained - the shape remains a boat or a ship of the desired kind during reshaping. Our building blocks for such an integration are: a thousand-fold increase in PPP speed3, new editing tools which maintain Boatness4 , and an accessible modularization of the engineering physics of the PPP within a new programming environment which allows immediate changes by designers. Specifically, these new functions are introduced at the boundary of Drawing and the PPP: - A live knotmeter is displayed with each design variant on the drawing boar, - alongside it's antagonist - Rating. - Continuously updated hydrotatics (including the speed determining factors LSM, wetted surface, stability, prismatics, .. ) are displayed with the knotometer, with the 'positive' factors (like length) graphically opposing the 'negative' (like wetted surface.) Dimensions for PPP use are calculated automatically from the shape at hand - in particular: appendage dimensions, hydrostatics, and so forth. - Bounding limits are set for a design optimization by drawing two or more outlier yacht forms. The space in between can be explored by hand or automatically. - Local optimums of Speed against rating are provided as a 'Snap' function. This is the one dimensional version of automatic exploration for optima. - Intermediate shapes are also controlled during design optimization to maintain realism and performance constraints on type, fairness, 'look', speed producing shape measures like prismatic and displacement etc., and even handicap. - Immediate feedback is available if one chooses to exploit the new programming environment to make aero hydro model changes or extensions to the internal PPP mechanisms while drawing and exploring.


1998 ◽  
Vol 6 (4) ◽  
pp. 361-386 ◽  
Author(s):  
Helmut A. Mayer

In this article we present work on chromosome structures for genetic algorithms (GAs) based on biological principles. Mainly, the influence of noncoding segments on GA behavior and performance is investigated. We compare representations with noncoding sequences at predefined, fixed locations with “junk” code induced by the use of promoter/terminator sequences (ptGAs) that define start and end of a coding sequence, respectively. AS one of the advantages of noncoding segments a few researchers have identified the reduction of the disruptive effects of crossover, and we solidify this argument by a formal analysis of crossover disruption probabilities for noncoding segments at fixed locations. The additional use of promoter/terminator sequences not only enables evolution of parameter values, but also allows for adaptation of number, size, and location of genes (problem parameters) on an artificial chromosome. Randomly generated chromosomes of fixed length carry different numbers of promoter/terminator sequences resulting in genes of varying size and location. Evolution of these ptGA chromosomes drives the number of parameters and their values to (sub)optimal solutions. Moreover, the formation of tightly linked building blocks is enhanced by self-organization of gene locations. We also introduce a new, nondisruptive crossover operator emerging from the ptGA gene structure with adaptive crossover rate, location, and number of crossover sites. For experimental comparisons of this genetic operator to conventional crossover in GAs, as well as properties of different ptGA chromosome structures, an artificial problem from the literature is utilized. Finally, the potential of ptGA is demonstrated on an NP-complete combinatorial optimization problem.


2021 ◽  
Author(s):  
HAMID LAGA ◽  
Marcel Padilla ◽  
Ian H. Jermyn ◽  
Sebastian Kurtek ◽  
Mohammed Bennamoun ◽  
...  

We propose a novel framework to learn the spatiotemporal variability in longitudinal 3D shape data sets, which contain observations of subjects that evolve and deform over time. This problem is challenging since surfaces come with arbitrary parameterizations and thus, they need to be spatially registered onto each others. Also, different deforming subjects, hereinafter referred to as 4D surfaces, evolve at different speeds and thus, they need to be temporally aligned onto each others. We solve this spatiotemporal registration problem using a Riemannian approach. We treat a 3D surface as a point in a shape space equipped with an elastic Riemmanian metric that measures the amount of bending and stretching that the surfaces undergo. A 4D surface can then be seen as a trajectory in this space. With this formulation, the statistical analysis of 4D surfaces can be cast as the problem of analyzing trajectories, or 1D curves, embedded in a nonlinear Riemannian manifold. However, performing the spatiotemporal registration, and subsequently computing statistics, on such nonlinear spaces is not straightforward as they rely on complex nonlinear optimizations. Our core contribution is the mapping of the surfaces to the space of Square-Root Normal Fields (SRNF) where the L2 metric is equivalent to the partial elastic metric in the space of surfaces. Thus, by solving the spatial registration in the SRNF space, the problem of analyzing 4D surfaces becomes the problem of analyzing trajectories embedded in the SRNF space, which has a Euclidean structure. In this paper, we develop the building blocks that enable such analysis. These include: (1) the spatiotemporal registration of arbitrarily parameterized 4D surfaces even in the presence of large elastic deformations and large variations in their execution rates, (2) the computation of geodesics between 4D surfaces, (3) the computation of statistical summaries, such as means and modes of variation, of collections of 4D surfaces, and (4) the synthesis of random 4D surfaces. We demonstrate the utility and performance of the proposed framework using 4D facial surfaces and 4D human body shapes.


2021 ◽  
Vol 12 ◽  
Author(s):  
David G. Behm ◽  
Tori B. Carter

Performance is dependent upon both physical and psychological factors. As a social animal, human behaviors are influenced by interactions with others. Empathy is based on social interactions and is defined as the understanding, awareness of, sensitivity to, and ability to vicariously experience the feelings, thoughts, and experience of another. There are few investigations on the influence of empathy in relation to individual and team performance and activity. There is some initial research suggesting that observing sad photos or videos or fatiguing exercise can adversely affect subsequent performance. Possible mechanisms may be attributed to mirror neurons or the affordance competition hypothesis. The relative degree of empathetic influences can be modulated by sex, age, personal familiarity, cultures and other factors. With the limited research in sport and exercise science, there is a need for more research to investigate the role of empathy on individual and team performances. The objective of this topical review was to examine the possible effects of empathy on physical performance, the potential underlying mechanisms and influencing variables moderating the association between empathy and performance?


2021 ◽  
Author(s):  
HAMID LAGA ◽  
Marcel Padilla ◽  
Ian H. Jermyn ◽  
Sebastian Kurtek ◽  
Mohammed Bennamoun ◽  
...  

We propose a novel framework to learn the spatiotemporal variability in longitudinal 3D shape data sets, which contain observations of subjects that evolve and deform over time. This problem is challenging since surfaces come with arbitrary parameterizations and thus, they need to be spatially registered onto each others. Also, different deforming subjects, hereinafter referred to as 4D surfaces, evolve at different speeds and thus, they need to be temporally aligned onto each others. We solve this spatiotemporal registration problem using a Riemannian approach. We treat a 3D surface as a point in a shape space equipped with an elastic Riemmanian metric that measures the amount of bending and stretching that the surfaces undergo. A 4D surface can then be seen as a trajectory in this space. With this formulation, the statistical analysis of 4D surfaces can be cast as the problem of analyzing trajectories, or 1D curves, embedded in a nonlinear Riemannian manifold. However, performing the spatiotemporal registration, and subsequently computing statistics, on such nonlinear spaces is not straightforward as they rely on complex nonlinear optimizations. Our core contribution is the mapping of the surfaces to the space of Square-Root Normal Fields (SRNF) where the L2 metric is equivalent to the partial elastic metric in the space of surfaces. Thus, by solving the spatial registration in the SRNF space, the problem of analyzing 4D surfaces becomes the problem of analyzing trajectories embedded in the SRNF space, which has a Euclidean structure. In this paper, we develop the building blocks that enable such analysis. These include: (1) the spatiotemporal registration of arbitrarily parameterized 4D surfaces even in the presence of large elastic deformations and large variations in their execution rates, (2) the computation of geodesics between 4D surfaces, (3) the computation of statistical summaries, such as means and modes of variation, of collections of 4D surfaces, and (4) the synthesis of random 4D surfaces. We demonstrate the utility and performance of the proposed framework using 4D facial surfaces and 4D human body shapes.


2020 ◽  
Vol 02 (03) ◽  
pp. 214-222
Author(s):  
Bin Liu ◽  
Huiliang Sun ◽  
Chang Woo Koh ◽  
Mengyao Su ◽  
Bao Tu ◽  
...  

Compared with p-type terpolymers, less effort has been devoted to n-type analogs. Herein, we synthesized a series of n-type terpolymers via incorporating three electron-deficient third components including thienopyrroledione (TPD), phthalimide, and benzothiadiazole into an imide-functionalized parent n-type copolymer to tune optoelectronic properties without sacrificing the n-type characteristics. Due to effects of the third components with different electron-accepting ability and solubility, the resulting three polymers feature distinct energy levels and crystallinity. In addition, heteroatoms (S, O, and N) attached on the third components trigger intramolecular noncovalent interactions, which can increase molecule planarity and have a significant effect on the packing structures of the polymer films. As a result, the best power conversion efficiency of 8.28% was achieved from all-polymer solar cells (all-PSCs) based on n-type terpolymer containing TPD. This is contributed by promoted electron mobility and face-on polymer packing, showing the pronounced advantages of the TPD used as a third component for thriving efficient n-type terpolymers. The generality is also successfully validated in a benchmark polymer donor/acceptor system by introducing TPD into the benchmark n-type polymer N2200. The results demonstrate the feasibility of introducing suitable electron-deficient building blocks as the third components for high-performance n-type terpolymers toward efficient all-PSCs.


Sign in / Sign up

Export Citation Format

Share Document