scholarly journals A low density genome-wide search for loci involved in alcohol dependence using the transmission/disequilibrium test, sib-tdt, and two combined tests

1999 ◽  
Vol 17 (S1) ◽  
pp. S85-S90 ◽  
Author(s):  
Nicola J. Camp ◽  
Aruna Bansal
2007 ◽  
Vol 121 (3-4) ◽  
pp. 357-367 ◽  
Author(s):  
Jinying Zhao ◽  
Eric Boerwinkle ◽  
Momiao Xiong

Author(s):  
Theodore Reich ◽  
Howard J. Edenberg ◽  
Alison Goate ◽  
Jeff T. Williams ◽  
John P. Rice ◽  
...  

2010 ◽  
Vol 128 (3) ◽  
pp. 325-344 ◽  
Author(s):  
María M. Abad-Grau ◽  
Nuria Medina-Medina ◽  
Rosana Montes-Soldado ◽  
José Moreno-Ortega ◽  
Fuencisla Matesanz

1999 ◽  
Vol 17 (S1) ◽  
pp. S295-S300 ◽  
Author(s):  
L.E. Peterson ◽  
J.S. Barnholtz ◽  
G.P. Page ◽  
T.M. King ◽  
M. de Andrade ◽  
...  

2021 ◽  
Author(s):  
Akito Yamamoto ◽  
Tetsuo Shibuya

To achieve the provision of personalized medicine, it is very important to investigate the relationship between diseases and human genomes. For this purpose, large-scale genetic studies such as genome-wide association studies are often conducted, but there is a risk of identifying individuals if the statistics are released as they are. In this study, we propose new efficient differentially private methods for a transmission disequilibrium test, which is a family-based association test. Existing methods are computationally intensive and take a long time even for a small cohort. Moreover, for approximation methods, sensitivity of the obtained values is not guaranteed. We present an exact algorithm with a time complexity of 𝒪(nm) for a dataset containing n families and m single nucleotide polymorphisms (SNPs). We also propose an approximation algorithm that is faster than the exact one and prove that the obtained scores’ sensitivity is 1. From our experimental results, we demonstrate that our exact algorithm is 10, 000 times faster than existing methods for a small cohort with 5, 000 SNPs. The results also indicate that the proposed method is the first in the world that can be applied to a large cohort, such as those with 106 SNPs. In addition, we examine a suitable dataset to apply our approximation algorithm. Supplementary materials are available at https://github.com/ay0408/DP-trio-TDT.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Kai Zhao ◽  
Lin Liu ◽  
...  

Abstract Background The Late Embryogenesis-Abundant (LEA) gene families, which play significant roles in regulation of tolerance to abiotic stresses, widely exist in higher plants. Poplar is a tree species that has important ecological and economic values. But systematic studies on the gene family have not been reported yet in poplar. Results On the basis of genome-wide search, we identified 88 LEA genes from Populus trichocarpa and renamed them as PtrLEA. The PtrLEA genes have fewer introns, and their promoters contain more cis-regulatory elements related to abiotic stress tolerance. Our results from comparative genomics indicated that the PtrLEA genes are conserved and homologous to related genes in other species, such as Eucalyptus robusta, Solanum lycopersicum and Arabidopsis. Using RNA-Seq data collected from poplar under two conditions (with and without salt treatment), we detected 24, 22 and 19 differentially expressed genes (DEGs) in roots, stems and leaves, respectively. Then we performed spatiotemporal expression analysis of the four up-regulated DEGs shared by the tissues, constructed gene co-expression-based networks, and investigated gene function annotations. Conclusion Lines of evidence indicated that the PtrLEA genes play significant roles in poplar growth and development, as well as in responses to salt stress.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1984
Author(s):  
Majid Nikpay ◽  
Sepehr Ravati ◽  
Robert Dent ◽  
Ruth McPherson

Here, we performed a genome-wide search for methylation sites that contribute to the risk of obesity. We integrated methylation quantitative trait locus (mQTL) data with BMI GWAS information through a SNP-based multiomics approach to identify genomic regions where mQTLs for a methylation site co-localize with obesity risk SNPs. We then tested whether the identified site contributed to BMI through Mendelian randomization. We identified multiple methylation sites causally contributing to the risk of obesity. We validated these findings through a replication stage. By integrating expression quantitative trait locus (eQTL) data, we noted that lower methylation at cg21178254 site upstream of CCNL1 contributes to obesity by increasing the expression of this gene. Higher methylation at cg02814054 increases the risk of obesity by lowering the expression of MAST3, whereas lower methylation at cg06028605 contributes to obesity by decreasing the expression of SLC5A11. Finally, we noted that rare variants within 2p23.3 impact obesity by making the cg01884057 site more susceptible to methylation, which consequently lowers the expression of POMC, ADCY3 and DNAJC27. In this study, we identify methylation sites associated with the risk of obesity and reveal the mechanism whereby a number of these sites exert their effects. This study provides a framework to perform an omics-wide association study for a phenotype and to understand the mechanism whereby a rare variant causes a disease.


Sign in / Sign up

Export Citation Format

Share Document