transmission disequilibrium
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 9)

H-INDEX

45
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Akito Yamamoto ◽  
Tetsuo Shibuya

To achieve the provision of personalized medicine, it is very important to investigate the relationship between diseases and human genomes. For this purpose, large-scale genetic studies such as genome-wide association studies are often conducted, but there is a risk of identifying individuals if the statistics are released as they are. In this study, we propose new efficient differentially private methods for a transmission disequilibrium test, which is a family-based association test. Existing methods are computationally intensive and take a long time even for a small cohort. Moreover, for approximation methods, sensitivity of the obtained values is not guaranteed. We present an exact algorithm with a time complexity of 𝒪(nm) for a dataset containing n families and m single nucleotide polymorphisms (SNPs). We also propose an approximation algorithm that is faster than the exact one and prove that the obtained scores’ sensitivity is 1. From our experimental results, we demonstrate that our exact algorithm is 10, 000 times faster than existing methods for a small cohort with 5, 000 SNPs. The results also indicate that the proposed method is the first in the world that can be applied to a large cohort, such as those with 106 SNPs. In addition, we examine a suitable dataset to apply our approximation algorithm. Supplementary materials are available at https://github.com/ay0408/DP-trio-TDT.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009309
Author(s):  
Kunling Huang ◽  
Yuchang Wu ◽  
Junha Shin ◽  
Ye Zheng ◽  
Alireza Fotuhi Siahpirani ◽  
...  

Recent advances in consortium-scale genome-wide association studies (GWAS) have highlighted the involvement of common genetic variants in autism spectrum disorder (ASD), but our understanding of their etiologic roles, especially the interplay with rare variants, is incomplete. In this work, we introduce an analytical framework to quantify the transmission disequilibrium of genetically regulated gene expression from parents to offspring. We applied this framework to conduct a transcriptome-wide association study (TWAS) on 7,805 ASD proband-parent trios, and replicated our findings using 35,740 independent samples. We identified 31 associations at the transcriptome-wide significance level. In particular, we identified POU3F2 (p = 2.1E-7), a transcription factor mainly expressed in developmental brain. Gene targets regulated by POU3F2 showed a 2.7-fold enrichment for known ASD genes (p = 2.0E-5) and a 2.7-fold enrichment for loss-of-function de novo mutations in ASD probands (p = 7.1E-5). These results provide a novel connection between rare and common variants, whereby ASD genes affected by very rare mutations are regulated by an unlinked transcription factor affected by common genetic variations.


2020 ◽  
Author(s):  
Jiawen Chen ◽  
Jing You ◽  
Zijie Zhao ◽  
Zheng Ni ◽  
Kunling Huang ◽  
...  

AbstractPolygenic risk scores (PRS) derived from summary statistics of genome-wide association studies (GWAS) have enjoyed great popularity in human genetics research. Applied to population cohorts, PRS can effectively stratify individuals by risk group and has promising applications in early diagnosis and clinical intervention. However, our understanding of within-family polygenic risk is incomplete, in part because the small samples per family significantly limits power. Here, to address this challenge, we introduce ORIGAMI, a computational framework that uses parental genotype data to simulate offspring genomes. ORIGAMI uses state-of-the-art genetic maps to simulate realistic recombination events on phased parental genomes and allows quantifying the prospective PRS variability within each family. We quantify and showcase the substantially reduced yet highly heterogeneous PRS variation within families for numerous complex traits. Further, we incorporate within-family PRS variability to improve polygenic transmission disequilibrium test (pTDT). Through simulations, we demonstrate that modeling within-family risk substantially improves the statistical power of pTDT. Applied to 7,805 trios of autism spectrum disorder (ASD) probands and healthy parents, we successfully replicated previously reported over-transmission of ASD, educational attainment, and schizophrenia risk, and identified multiple novel traits with significant transmission disequilibrium. These results provided novel etiologic insights into the shared genetic basis of various complex traits and ASD.


2019 ◽  
Author(s):  
Kunling Huang ◽  
Yuchang Wu ◽  
Junha Shin ◽  
Ye Zheng ◽  
Alireza Fotuhi Siahpirani ◽  
...  

AbstractRecent advances in consortium-scale genome-wide association studies (GWAS) have highlighted the involvement of common genetic variants in autism spectrum disorder (ASD), but our understanding of their etiologic roles, especially the interplay with rare variants, is incomplete. In this work, we introduce an analytical framework to quantify the transmission disequilibrium of genetically regulated gene expression from parents to offspring. We applied this framework to conduct a transcriptome-wide association study (TWAS) on 7,805 ASD proband-parent trios, and replicated our findings using 35,740 independent samples. We identified 31 associations at the transcriptome-wide significance level. In particular, we identified POU3F2 (p=2.1e-7), a transcription factor (TF) mainly expressed in developmental brain. TF targets regulated by POU3F2 showed a 2.1-fold enrichment for known ASD genes (p=4.6e-5) and a 2.7-fold enrichment for loss-of-function de novo mutations in ASD probands (p=7.1e-5). These results provide a clear example of the connection between ASD genes affected by very rare mutations and an unlinked key regulator affected by common genetic variations.


2019 ◽  
Vol 20 (3) ◽  
pp. 239-245
Author(s):  
América L. Miranda‐Lora ◽  
Mario Molina‐Díaz ◽  
Miguel Cruz ◽  
Rocío Sánchez‐Urbina ◽  
Nancy L. Martínez‐Rodríguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document