Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development

Glia ◽  
2005 ◽  
Vol 50 (2) ◽  
pp. 132-144 ◽  
Author(s):  
C. Agresti ◽  
M.E. Meomartini ◽  
S. Amadio ◽  
E. Ambrosini ◽  
B. Serafini ◽  
...  
2007 ◽  
Vol 292 (5) ◽  
pp. F1380-F1389 ◽  
Author(s):  
Ian Rivera ◽  
Shali Zhang ◽  
B. Scott Fuller ◽  
Brentan Edwards ◽  
Tsugio Seki ◽  
...  

Experiments were performed to establish the pharmacological profile of purinoceptors and to identify the signal transduction pathways responsible for increases in intracellular calcium concentration ([Ca2+]i) for cultured mouse mesangial cells. Mouse mesangial cells were loaded with fura 2 and examined using fluorescent spectrophotometry. Basal [Ca2+]i averaged 102 ± 2 nM ( n = 346). One hundred micromolar concentrations of ATP, ADP, 2′,3′-(benzoyl-4-benzoyl)-ATP (BzATP), ATP-γ-S, and UTP in normal Ca2+ medium evoked peak increases in [Ca2+]i of 866 ± 111, 236 ± 18, 316 ± 26, 427 ± 37, and 808 ± 73 nM, respectively. UDP or 2-methylthio-ATP (2MeSATP) failed to elicit significant increases in [Ca2+]i, whereas identical concentrations of adenosine, AMP, and α,β-methylene ATP (α,β-MeATP) had no detectable effect on [Ca2+]i. Removal of Ca2+ from the extracellular medium had no significant effect on the peak increase in [Ca2+]i induced by ATP, ADP, BzATP, ATP-γ-S, or UTP compared with normal Ca2+; however, Ca2+-free conditions did accelerate the rate of decline in [Ca2+]i in cells treated with ATP and UTP. [Ca2+]i was unaffected by membrane depolarization with 143 mM KCl. Western blot analysis for P2 receptors revealed expression of P2X2, P2X4, P2X7, P2Y2, and P2Y4 receptors. No evidence of P2X1 and P2X3 receptor expression was detected, whereas RT-PCR analysis reveals mRNA expression for P2X1, P2X2, P2X3, P2X4, P2X7, P2Y2, and P2Y4 receptors. These data indicate that receptor-specific P2 receptor activation increases [Ca2+]i by stimulating calcium influx from the extracellular medium and through mobilization of Ca2+ from intracellular stores in cultured mouse mesangial cells.


2002 ◽  
Vol 282 (2) ◽  
pp. F245-F255 ◽  
Author(s):  
Edward W. Inscho ◽  
Anthony K. Cook

Experiments were performed to determine the role of L-type calcium channels on the afferent arteriolar vasoconstrictor response to ATP and UTP. With the use of the blood-perfused juxtamedullary nephron technique, kidneys were perfused at 110 mmHg and the responses of arterioles to α,β-methylene ATP, ATP, and UTP were determined before and during calcium channel blockade with diltiazem. α,β-Methylene ATP (1.0 μM) decreased arteriolar diameter by 8 ± 1% under control conditions. This response was abolished during calcium channel blockade. In contrast, 10 μM UTP reduced afferent arteriolar diameter to a similar degree before (20 ± 4%) and during (14 ± 4%) diltiazem treatment. Additionally, diltiazem completely prevented the vasoconstriction normally observed with ATP concentrations below 10 μM and attenuated the response obtained with 10 μM ATP. These data demonstrate that L-type calcium channels play a significant role in the vasoconstrictor influences of α,β-methylene ATP and ATP but not UTP. The data also suggest that other calcium influx pathways may participate in the vasoconstrictor response evoked by P2 receptor activation. These observations support previous findings that UTP-mediated elevation of intracellular calcium concentration in preglomerular vascular smooth muscle cells relies primarily on calcium release from intracellular pools, whereas ATP-mediated responses involve both voltage-dependent calcium influx, through L-type calcium channels, and the release of calcium from intracellular stores. These results support the argument that P2X and P2Y receptors influence the diameter of afferent arterioles through activation of disparate signal transduction mechanisms.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2801-2809 ◽  
Author(s):  
Jean Sévigny ◽  
Christian Sundberg ◽  
Norbert Braun ◽  
Olaf Guckelberger ◽  
Eva Csizmadia ◽  
...  

Abstract Nucleoside triphosphate diphosphohydrolases (NTPDases) are a recently described family of ectonucleotidases that differentially hydrolyze the γ and β phosphate residues of extracellular nucleotides. Expression of this enzymatic activity has the potential to influence nucleotide P2 receptor signaling within the vasculature. We and others have documented that NTPDase1 (CD39, 78 kd) hydrolyzes both triphosphonucleosides and diphosphonucleosides and thereby terminates platelet aggregation responses to adenosine diphosphate (ADP). In contrast, we now show that NTPDase2 (CD39L1, 75 kd), a preferential nucleoside triphosphatase, activates platelet aggregation by converting adenosine triphosphate (ATP) to ADP, the specific agonist of P2Y1 and P2Y12 receptors. We developed specific antibodies to murine NTPDase1 and NTPDase2 and observed that both enzymes are present in the cardiac vasculature; NTPDase1 is expressed by endothelium, endocardium, and to a lesser extent by vascular smooth muscle, while NTPDase2 is associated with the adventitia of muscularized vessels, microvascular pericytes, and other cell populations in the subendocardial space. Moreover, NTPDase2 represents a novel marker for microvascular pericytes. Differential expression of NTPDases in the vasculature suggests spatial regulation of nucleotide-mediated signaling. In this context, NTPDase1 should abrogate platelet aggregation and recruitment in intact vessels by the conversion of ADP to adenosine monophosphate, while NTPDase2 expression would promote platelet microthrombus formation at sites of extravasation following vessel injury. Our data suggest that specific NTPDases, in tandem with ecto-5′-nucleotidase, not only terminate P2 receptor activation and trigger adenosine receptors but may also allow preferential activation of specific subsets of P2 receptors sensitive to ADP (eg, P2Y1, P2Y3, P2Y12) and uridine diphosphate (P2Y6).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kylie J. Mansfield ◽  
Jessica R. Hughes

The release of ATP from the urothelium in response to stretch during filling demonstrates the importance of the purinergic system for the physiological functioning of the bladder. This study examined the effect of P2 receptor agonists on ATP release from two urothelial cell lines (RT4 and UROtsa cells). Hypotonic Krebs was used as a stretch stimulus. Incubation of urothelial cells with high concentrations of the P2Y agonist ADP induced ATP release to a level that was 40-fold greater than hypotonic-stimulated ATP release (P< 0.0011, ADP EC50 1.8 µM). Similarly, an increase in ATP release was also observed with the P2Y agonist, UTP, up to a maximum of 70% of the hypotonic response (EC50 0.62 µM). Selective P2 receptor agonists,αβ-methylene-ATP, ATP-γ-S, and 2-methylthio-ADP had minimal effects on ATP release. ADP-stimulated ATP release was significantly inhibited by suramin (100 µM,P= 0.002). RT4 urothelial cells break down nucleotides (100 µM) including ATP, ADP, and UTP to liberate phosphate. Phosphate liberation was also demonstrated from endogenous nucleotides with approximately 10% of the released ATP broken down during the incubation. These studies demonstrate a role for P2Y receptor activation in stimulation of ATP release and emphasize the complexity of urothelial P2 receptor signalling.


2001 ◽  
Vol 281 (5) ◽  
pp. H2089-H2096 ◽  
Author(s):  
Xueying Zhao ◽  
Edward W. Inscho ◽  
Muralidhar Bondlela ◽  
John R. Falck ◽  
John D. Imig

This study was conducted to test the hypothesis that the cytochrome P-450 (CYP450) metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the afferent arteriolar response to P2 receptor activation. Afferent arteriolar responses to ATP, the P2X agonist, α,β-methylene ATP and the P2Y agonist UTP were determined before and after treatment with the selective CYP450 hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or the 20-HETE antagonist, 20-hydroxyeicosa-6( Z),15( Z)-dienoic acid (20-HEDE). Stimulation with 1.0 and 10 μM ATP elicited an initial preglomerular vasoconstriction of 12 ± 1% and 45 ± 4% and a sustained vasoconstriction of 11 ± 1% and 11 ± 2%, respectively. DDMS or 20-HEDE significantly attenuated the sustained afferent arteriolar constrictor response to ATP. α,β-Methylene ATP (1 μM) induced a rapid initial afferent vasoconstriction of 64 ± 3%, which partially recovered to a stable diameter 10 ± 1% smaller than control. Both DDMS and 20-HEDE significantly attenuated the initial vasoconstriction and abolished the sustained vasoconstrictor response to α,β-methylene ATP. UTP decreased afferent diameter by 50 ± 5% and 20-HEDE did not change this response. In addition, the ATP-induced increase in the intracellular Ca2+ concentration in preglomerular microvascular smooth muscle cells was significantly attenuated by 20-HEDE. Taken together, these results are consistent with the hypothesis that the CYP450 metabolite 20-HETE participates in the afferent arteriolar response to activation of P2X receptors.


2001 ◽  
Vol 280 (6) ◽  
pp. F927-F944 ◽  
Author(s):  
Edward W. Inscho

In the last 10–15 years, interest in the physiological role of P2 receptors has grown rapidly. Cellular, tissue, and organ responses to P2 receptor activation have been described in numerous in vivo and in vitro models. The purpose of this review is to provide an update of the recent advances made in determining the involvement of P2 receptors in the control of renal hemodynamics and the renal microcirculation. Special attention will be paid to work published in the last 5–6 years directed at understanding the role of P2 receptors in the physiological control of renal microvascular function. Several investigators have begun to evaluate the effects of P2 receptor activation on renal microvascular function across several species. In vivo and in vitro evidence consistently supports the hypothesis that P2 receptor activation by locally released extracellular nucleotides influences microvascular function. Extracellular nucleotides selectively influence preglomerular resistance without having an effect on postglomerular tone. P2 receptor inactivation blocks autoregulatory behavior whereas responsiveness to other vasoconstrictor agonists is retained. P2 receptor stimulation activates multiple intracellular signal transduction pathways in preglomerular smooth muscle cells and mesangial cells. Renal microvascular cells and mesangial cells express multiple subtypes of P2 receptors; however, the specific role each plays in regulating vascular and mesangial cell function remains unclear. Accordingly, the results of studies performed to date provide strong support for the hypothesis that P2 receptors are important contributors to the physiological regulation of renal microvascular and/or glomerular function.


2012 ◽  
Vol 189 (3) ◽  
pp. 1303-1310 ◽  
Author(s):  
Sara Trabanelli ◽  
Darina Očadlíková ◽  
Sara Gulinelli ◽  
Antonio Curti ◽  
Valentina Salvestrini ◽  
...  

Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 1077-1090 ◽  
Author(s):  
C.A. Ghiani ◽  
A.M. Eisen ◽  
X. Yuan ◽  
R.A. DePinho ◽  
C.J. McBain ◽  
...  

We examined the pathways that link neurotransmitter receptor activation and cell cycle arrest in oligodendrocyte progenitors. We had previously demonstrated that glutamate receptor activation inhibits oligodendrocyte progenitor proliferation and lineage progression. Here, using purified oligodendrocyte progenitors and cerebellar slice cultures, we show that norepinephrine and the beta-adrenergic receptor agonist isoproterenol also inhibited the proliferation, but in contrast to glutamate, isoproterenol stimulated progenitor lineage progression, as determined by O4 and O1 antibody staining. This antiproliferative effect was specifically attributable to a beta-adrenoceptor-mediated increase in cyclic adenosine monophosphate, since analogs of this cyclic nucleotide mimicked the effects of isoproterenol on oligodendrocyte progenitor proliferation, while alpha-adrenoceptor agonists were ineffective. Despite the opposite effects on lineage progression, both isoproterenol and the glutamate receptor agonist kainate caused accumulation of the cyclin-dependent kinase inhibitors p27(Kip1)and p21(CIP1), and G1 arrest. Studies with oligodendrocyte progenitor cells from INK4a−/− mice indicated that the G1 cyclin kinase inhibitor p16(INK4a) as well as p19(ARF)were not required for agonist-stimulated proliferation arrest. Our results demonstrate that beta-adrenergic and glutamatergic receptor activation inhibit oligodendrocyte progenitor proliferation through a mechanism that may involve p27(Kip1) and p21(CIP1); but while neurotransmitter-induced accumulation of p27(Kip1) is associated with cell cycle arrest, it does not by itself promote oligodendrocyte progenitor differentiation.


Sign in / Sign up

Export Citation Format

Share Document